首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   23篇
  2022年   1篇
  2015年   7篇
  2014年   4篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   8篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1977年   3篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
1.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cell. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ‘Crabtree effect’, was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate hydrogenase was subject to glucose inactivation.  相似文献   
2.
3.
4.
Subtilin and the closely related entianin are class I lantibiotics produced by different subspecies of Bacillus subtilis. Both molecules are ribosomally synthesized peptide antibiotics with unusual ring structures. Subtilin-like lantibiotics develop strong antibiotic activities against various Gram-positive organisms with an efficiency similar to that of nisin from Lactococcus lactis. In contrast to nisin, subtilin-like lantibiotics partially undergo an additional posttranslational modification, where the N-terminal tryptophan residue becomes succinylated, resulting in drastically reduced antibiotic activities. A highly sensitive high-performance liquid chromatography (HPLC)-based quantification method enabled us to determine entianin and succinylated entianin (S-entianin) concentrations in the supernatant during growth. We show that entianin synthesis and the degree of succinylation drastically change with culture conditions. In particular, increasing glucose concentrations resulted in higher entianin amounts and lower proportions of S-entianin in Landy-based media. In contrast, no succinylation was observed in medium A with 10% glucose. Interestingly, glucose retarded the expression of entianin biosynthesis genes. Furthermore, deletion of the transition state regulator AbrB resulted in a 6-fold increased entianin production in medium A with 10% glucose. This shows that entianin biosynthesis in B. subtilis is strongly influenced by glucose, in addition to its regulation by the transition state regulator AbrB. Our results suggest that the mechanism underlying the succinylation of subtilin-like lantibiotics is enzymatically catalyzed and occurs in the extracellular space or at the cellular membrane.  相似文献   
5.
6.
Metabolic adaptation of Saccharomyces cerevisiae cells from a nonfermentable carbon source to glucose induces selective, rapid breakdown of the gluconeogenetic key enzyme fructose-1,6-bisphosphatase (FBPase), a process called catabolite degradation. Herein, we identify eight novel GID genes required for proteasome-dependent catabolite degradation of FBPase. Four yeast proteins contain the CTLH domain of unknown function. All of them are Gid proteins. The site of catabolite degradation has been controversial until now. Two FBPase degradation pathways have been described, one dependent on the cytosolic ubiquitin-proteasome machinery, and the other dependent on vacuolar proteolysis. Interestingly, three of the novel Gid proteins involved in ubiquitin-proteasome-dependent degradation have also been reported by others to affect the vacuolar degradation pathway. As shown herein, additional genes suggested to be essential for vacuolar degradation are unnecessary for proteasome-dependent degradation. These data raise the question as to whether two FBPase degradation pathways exist that share components. Detailed characterization of Gid2p demonstrates that it is part of a soluble, cytosolic protein complex of at least 600 kDa. Gid2p is necessary for FBPase ubiquitination. Our studies have not revealed any involvement of vesicular intermediates in proteasome-dependent FBPase degradation. The influence of Ubp14p, a deubiquitinating enzyme, on proteasome-dependent catabolite degradation was further uncovered.  相似文献   
7.
A lantibiotic gene cluster was identified in Bacillus subtilis A1/3 showing a high degree of homology to the subtilin gene cluster and occupying the same genetic locus as the spa genes in B. subtilis ATCC 6633. The gene cluster exhibits diversity with respect to duplication of two subtilin-like genes which are separated by a sequence similar to a portion of a lanC gene. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analyses of B. subtilis A1/3 culture extracts confirmed the presence of two lantibiotic-like peptides, ericin S (3,442 Da) and ericin A (2,986 Da). Disruption of the lanB-homologous gene eriB resulted in loss of production of both peptides, demonstrating that they are processed in an eriB-dependent manner. Although precursors of ericins S and A show only 75% of identity, the matured lantibiotic-like peptides reveal highly similar physical properties; separation was only achieved after multistep, reversed-phase high-performance liquid chromatography. Based on Edman and peptidase degradation in combination with MALDI-TOF MS, for ericin S a subtilin-like, lanthionine-bridging pattern is supposed. For ericin A two C-terminal rings are different from the lanthionine pattern of subtilin. Due to only four amino acid exchanges, ericin S and subtilin revealed similar antibiotic activities as well as similar properties in response to heat and protease treatment. For ericin A only minor antibiotic activity was found.  相似文献   
8.
Nisin produced by Streptococcus lactis is used as a food preservative and is the most important member of a group of antibiotics containing lanthionine bridges. To understand the genetic basis of these so-called lantibiotics (Schnell et al., Nature 333:276-278, 1988), we characterized the nisin structural gene, nisA, which is located on a plasmid and codes for a 57-amino-acid prepeptide. The prepeptide is processed posttranslationally to the pentacyclic antibiotic. Although nisin and the recently elucidated lantibiotic epidermin from Staphylococcus epidermidis are produced by different organisms, their gene organization is identical. As with epidermin, the nisin propeptide corresponds to the C-terminus of the prepeptide. The N-terminus of the prepeptide is cleaved at a characteristic splice site (Pro--2 Arg--1 Ile-+1). Remarkably, the N-terminus of prenisin shares 70% similarity with preepidermin, although the propeptide sequences are distinctly different. The structural similarities between these two lantibiotics are consistent with the fact that there is a common mechanism of biosynthesis of these lanthionine-containing antibiotics.  相似文献   
9.
Peptide antibiotics containing lanthionine and 3-methyllanthionine bridges, named lantibiotics are of increasing interest. A new lantibiotic, gallidermin, has been isolated from Staphyloccus gallinarum. Here we report the isolation of its structural gene which we name gdmA. In all lantibiotics so far studied genetically, three peptides can be formally distinguished: (i) the primary translation product, which we call the prepeptide; (ii) the propeptide lacking the leader sequence and (iii) the mature lantibiotic. Unlike the plasmid-coded epidermin, gdmA is located on the chromosome. The gdmA locus codes for a 52 amino acid residue prepeptide, consisting of an alpha-helical leader sequence of hydrophilic character, which is separated from the C-terminus (propeptide) by a characteristic proteolytic processing site (Pro-2 Arg-1 Ile1). Although pro-gallidermin differs from pro-epidermin (a recently isolated lantibiotic) only by a single amino acid residue exchange. Leu instead of Ile, the N-terminus of the prepeptide differs by an additional two exchanges.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号