首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
snoRNA的结构与功能   总被引:1,自引:0,他引:1  
张筱晨  周惠  屈良鹄 《生命科学》2008,20(2):171-177
核仁小分子RNA(snoRNA)是一类广泛分布于真核生物细胞核仁的小分子非编码RNA,具有保守的结构元件,并以此划分为3大类:boxC/DsnoRNA、boxH/ACAsnoRNA和MRPRNA。其中boxC/D和boxH/ACA是已知snoRNA的主要类型,以碱基配对的方式分别指导着核糖体RNA的甲基化和假尿嘧啶化修饰。研究发现,snoRNA除了在核糖体RNA的生物合成中发挥作用之外,还能够指导snRNA、tRNA和mRNA的转录后修饰。此外,还有相当数量的snoRNA功能不明,被称为孤儿sn0RNA(orphansnoRNA)。在哺乳动物的孤儿snoRNA中,印迹snoRNA(imprintedsnoRNA)是最为特殊的一群,由基因组印迹区编码,具有明显的组织表达特异性。原核生物古细菌中类snoRNA的鉴定表明这些非编码RNA家族成员的古老起源;而哺乳动物中大量的snoRNA反转座子的存在更为人们探索snoRNA在基因组中扩增和功能进化提供了新的思路。  相似文献   

3.
4.
Jády BE  Kiss T 《The EMBO journal》2001,20(3):541-551
In eukaryotes, two distinct classes of small nucleolar RNAs (snoRNAs), namely the fibrillarin-associated box C/D snoRNAs and the Gar1p-associated box H/ACA snoRNAs, direct the site-specific 2'-O-ribose methylation and pseudouridylation of ribosomal RNAs (rRNAs), respectively. We have identified a novel evolutionarily conserved snoRNA, called U85, which possesses the box elements of both classes of snoRNAs and associates with both fibrillarin and Gar1p. In vitro and in vivo pseudouridylation and 2'-O-methylation experiments provide evidence that the U85 snoRNA directs 2'-O-methylation of the C45 and pseudouridylation of the U46 residues in the invariant loop 1 of the human U5 spliceosomal RNA. The U85 is the first example of a snoRNA that directs modification of an RNA polymerase II-transcribed spliceosomal RNA and that functions both in RNA pseudouridylation and 2'-O-methylation.  相似文献   

5.
Multiple snoRNA gene clusters from Arabidopsis   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

6.
7.
The Plant snoRNA database (http://www.scri.sari.ac.uk/plant_snoRNA/) provides information on small nucleolar RNAs from Arabidopsis and eighteen other plant species. Information includes sequences, expression data, methylation and pseudouridylation target modification sites, initial gene organization (polycistronic, single gene and intronic) and the number of gene variants. The Arabidopsis information is divided into box C/D and box H/ACA snoRNAs, and within each of these groups, by target sites in rRNA, snRNA or unknown. Alignments of orthologous genes and gene variants from different plant species are available for many snoRNA genes. Plant snoRNA genes have been given a standard nomenclature, designed wherever possible, to provide a consistent identity with yeast and human orthologues.  相似文献   

8.
Guided tours: from precursor snoRNA to functional snoRNP.   总被引:35,自引:0,他引:35  
Small nucleolar RNAs (snoRNAs) use base pairing to guide modification of conserved nucleotides in functionally important regions of ribosomal RNA. The box C/D snoRNAs direct 2'-O-methylation and the box H/ACA snoRNAs direct pseudouridylation. Each snoRNA interacts with proteins, many of them newly identified. Progress in understanding how snoRNA sequences are stored within genomes, liberated from precursor molecules and targeted to the nucleolus has begun to elucidate each step in the biogenesis of these critical contributors to ribosome formation.  相似文献   

9.
Small nucleolar RNAs (snoRNAs) are 50‐ to 300‐nt non‐coding RNAs that are involved in critical cellular events, including rRNA/snRNA modification and splicing, ribosome genesis, telomerase formulation and cell proliferation. The identification of snoRNAs in the pig, which is a widely consumed commercial organism that also has important functions in medicine and biology, will enrich the snoRNA kingdom and provide evolutionary clues about snoRNAs. In this study, we performed a systematic identification of snoRNAs in Sus scrofa and obtained 120 candidate snoRNAs, 65 of which were predicted via sequencing from our constructed cDNA library. The others were obtained by computational screening. The primary structural features examined included the sequence length, GC content, conservation of common box motifs and nucleotide diversity. The results indicate that the primary features of H/ACA box snoRNAs are opposite to those of C/D box snoRNAs. Subsequently, based on chromosomal location and host gene determination, we assigned 91 snoRNAs to nine genome organization modes. Gene duplications and translocations are considered to contribute to the high abundant organization in evolution. Functional information about our novel snoRNAs, such as putative targets, modification sites and guide sequences, was predicted by orthologue alignment. A comparative analysis of predicted targets and possible modified loci on U6 snRNA and 5.8S and 18S rRNAs among five species revealed that targets of snoRNA are conserved among species. Furthermore, we performed a quantitative analysis of six representative snoRNA genes in two pig breeds during different developmental stages. Interestingly, all six snoRNAs from one breed expressed in a similar pattern over the tested time points; however, these same six genes had different expression patterns in the other pig breed. Specifically, expression of all six snoRNAs declined significantly from 65 to 90 days post‐coitus (dpc) and then increased slightly during adulthood in Tongcheng pigs, whereas the expression of the same six genes increased slowly from 65 dpc until adulthood in Landrace pigs. This expression pattern suggests that most housekeeping, non‐coding RNAs from a single pig breed may be similarly expressed during development. Our study adds to the knowledge about the snoRNA family by providing the first genome‐wide study of porcine snoRNAs. The comparative analysis of snoRNAs from different pig breeds gave us evolutionary insight into the function of snoRNAs.  相似文献   

10.
In mouse brain cDNA libraries generated from small RNA molecules we have identified a total of 201 different expressed RNA sequences potentially encoding novel small non-messenger RNA species (snmRNAs). Based on sequence and structural motifs, 113 of these RNAs can be assigned to the C/D box or H/ACA box subclass of small nucleolar RNAs (snoRNAs), known as guide RNAs for rRNA. While 30 RNAs represent mouse homologues of previously identified human C/D or H/ACA snoRNAs, 83 correspond to entirely novel snoRNAS: Among these, for the first time, we identified four C/D box snoRNAs and four H/ACA box snoRNAs predicted to direct modifications within U2, U4 or U6 small nuclear RNAs (snRNAs). Furthermore, 25 snoRNAs from either class lacked antisense elements for rRNAs or snRNAS: Therefore, additional snoRNA targets have to be considered. Surprisingly, six C/D box snoRNAs and one H/ACA box snoRNA were expressed exclusively in brain. Of the 88 RNAs not belonging to either snoRNA subclass, at least 26 are probably derived from truncated heterogeneous nuclear RNAs (hnRNAs) or mRNAS: Short interspersed repetitive elements (SINEs) are located on five RNA sequences and may represent rare examples of transcribed SINES: The remaining RNA species could not as yet be assigned either to any snmRNA class or to a part of a larger hnRNA/mRNA. It is likely that at least some of the latter will represent novel, unclassified snmRNAS:  相似文献   

11.
12.
Ribosomal RNAs contain a number of modified nucleotides. The most abundant nucleotide modifications found within rRNAs fall into two types: 2'-O-ribose methylations and pseudouridylations. In eukaryotes, small nucleolar guide RNAs, the snoRNAs that are the RNA components of the snoRNPs, specify the position of these modifications. The 2'-O-ribose methylations and pseudouridylations are guided by the box C/D and box H/ACA snoRNAs, respectively. The role of these modifications in rRNA remains poorly understood as no clear phenotype has yet been assigned to the absence of specific 2'-O-ribose methylations or pseudouridylations. Only very recently, a slight translation defect and perturbation of polysome profiles was reported in yeast for the absence of the Psi at position 2919 within the LSU rRNA. Here we report the identification and characterization in yeast of a novel intronic H/ACA snoRNA that we called snR191 and that guides pseudouridylation at positions 2258 and 2260 in the LSU rRNA. Most interestingly, these two modified bases are the most conserved pseudouridines from bacteria to human in rRNA. The corresponding human snoRNA is hU19. We show here that, in yeast, the presence of this snoRNA, and hence, most likely, of the conserved pseudouridines it specifies, is not essential for viability but provides a growth advantage to the cell.  相似文献   

13.
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.  相似文献   

14.
Box H/ACA snoRNAs represent an abundant group of small non-coding RNAs mainly involved in the pseudouridylation of rRNAs and/or snRNAs in eukaryotes and Archaea. In this study, we describe a novel experimental method for systematic identification of box H/ACA snoRNAs from eukaryotes. In the specialized cDNA libraries constructed by this method with total cellular RNAs from human blood cells, the high efficiency of cloning for diverse box H/ACA snoRNAs was achieved and seven novel species of this snoRNA family were identified from human for the first time. Furthermore, the novel method has been successfully applied for the identification of the box H/ACA snoRNAs from Drosophila and the fission yeast, demonstrating a powerful ability for systematic analysis of box H/ACA snoRNAs in a broad spectrum of eukaryotes.  相似文献   

15.
Chen CL  Liang D  Zhou H  Zhuo M  Chen YQ  Qu LH 《Nucleic acids research》2003,31(10):2601-2613
Using a powerful computer-assisted analysis strategy, a large-scale search of small nucleolar RNA (snoRNA) genes in the recently released draft sequence of the rice genome was carried out. This analysis identified 120 different box C/D snoRNA genes with a total of 346 gene variants, which were predicted to guide 135 2′-O-ribose methylation sites in rice rRNAs. Though not exhaustive, this analysis has revealed that rice has the highest number of known box C/D snoRNAs among eukaryotes. Interestingly, although many snoRNA genes are conserved between rice and Arabidopsis, almost half of the identified snoRNA genes are rice specific, which may highlight further the differences in rRNA methylation patterns between monocotyledons and dicotyledons. In addition to 76 singletons, 70 clusters involving 270 snoRNA genes were also found in rice. The large number of the novel snoRNA polycistrons found in the introns of rice protein-coding genes is in contrast to the one-snoRNA-per-intron organization of vertebrates and yeast, and of Arabidopsis in which only a few intronic snoRNA gene clusters were identified. Furthermore, due to a high degree of gene duplication, rice snoRNA genes are clearly redundant and exhibit great sequence variation among isoforms, allowing generation of new snoRNAs for selection. Thus, the large snoRNA gene family in plants can serve as an excellent model for a rapid and functional evolution.  相似文献   

16.
M L Bortolin  P Ganot    T Kiss 《The EMBO journal》1999,18(2):457-469
During site-specific pseudouridylation of eukaryotic rRNAs, selection of correct substrate uridines for isomerization into pseudouridine is directed by small nucleolar RNAs (snoRNAs). The pseudouridylation guide snoRNAs share a common 'hairpin-hinge- hairpin-tail' secondary structure and two conserved sequence motifs, the H and ACA boxes, located in the single-stranded hinge and tail regions, respectively. In the 5'- and/or 3'-terminal hairpin, an internal loop structure, the pseudouridylation pocket, selects the target uridine through formation of base-pairing interactions with rRNAs. Here, essential elements for accumulation and function of rRNA pseudouridylation guide snoRNAs have been analysed by expressing various mutant yeast snR5, snR36 and human U65 snoRNAs in yeast cells. We demonstrate that the H and ACA boxes that are required for formation of the correct 5' and 3' ends of the snoRNA, respectively, are also essential for the pseudouridylation reaction directed by both the 5'- and 3'-terminal pseudouridylation pockets. Similarly, RNA helices flanking the two pseudouridylation pockets are equally essential for pseudouridylation reactions mediated by either the 5' or 3' hairpin structure, indicating that the two hairpin domains function in a highly co-operative manner. Finally, we demonstrate that by manipulating the rRNA recognition motifs of pseudouridylation guide snoRNAs, novel pseudouridylation sites can be generated in yeast rRNAs.  相似文献   

17.
By generating a specialised cDNA library from four different developmental stages of Drosophila melanogaster, we have identified 66 candidates for small non-messenger RNAs (snmRNAs) and have confirmed their expression by northern blot analysis. Thirteen of them were expressed at certain stages of D.melanogaster development, only. Thirty-five species belong to the class of small nucleolar RNAs (snoRNAs), divided into 15 members from the C/D subclass and 20 members from the H/ACA subclass, which mostly guide 2'-O-methylation and pseudouridylation, respectively, of rRNA and snRNAs. These also include two outstanding C/D snoRNAs, U3 and U14, both functioning as pre-rRNA chaperones. Surprisingly, the sequence of the Drosophila U14 snoRNA reflects a major change of function of this snoRNA in Diptera relative to yeast and vertebrates. Among the 22 snmRNAs lacking known sequence and structure motifs, five were located in intergenic regions, two in introns, five in untranslated regions of mRNAs, eight were derived from open reading frames, and two were transcribed opposite to an intron. Interestingly, detection of two RNA species from this group implies that certain snmRNA species are processed from alternatively spliced pre-mRNAs. Surprisingly, a few snmRNA sequences could not be found on the published D.melanogaster genome, which might suggest that more snmRNA genes (as well as mRNAs) are hidden in unsequenced regions of the genome.  相似文献   

18.
The 2,2,7-trimethylguanosine caps of eukaryal snRNAs and snoRNA are formed by the enzyme Tgs1, which catalyzes sequential guanine-N2 methylations of m(7)G caps. Atypically, in the divergent unicellular eukaryote Trichomonas vaginalis, spliceosomal snRNAs lack a guanosine cap and the recombinant T. vaginalis trimethylguanosine synthase (TvTgs) produces only m(2,7)G in vitro. Here, we show by direct metabolic labeling that endogenous T. vaginalis RNAs contain m(7)G, m(2,7)G, and m(2,2,7)G caps. Immunodepletion of TvTgs from cell extracts and TvTgs add-back experiments demonstrate that TvTgs produces m(2,7)G and m(2,2,7)G caps. Expression of TvTgs in yeast tgs1Δ cells leads to the formation of m(2,7)G and m(2,2,7)G caps and complementation of the lethality of a tgs1Δ mud2Δ strain. Whereas TvTgs is present in the nucleus and cytosol of T. vaginalis cells, TMG-containing RNAs are localized primarily in the nucleolus. Molecular cloning of anti-TMG affinity-purified T. vaginalis RNAs identified 16 box H/ACA snoRNAs, which are implicated in guiding RNA pseudouridylation. The ensemble of new T. vaginalis H/ACA snoRNAs allowed us to predict and partially validate an extensive map of pseudouridines in T. vaginalis rRNA.  相似文献   

19.
20.
The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号