首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10–phenanthroline)ruthenium(II)–Na2SO3–permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10–phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na2SO3 is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05–10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A novel galangin–potassium permanganate (KMnO4)–polyphosphoric acid (PPA) system was found to have an outstanding response to tryptophan (Trp). Trp determination using this KMnO4–PPA system was enhanced significantly in the presence of galangin. A highly sensitive flow‐injection chemiluminescence (CL) method to determine Trp was developed based on the CL reaction of galangin–KMnO4–Trp in PPA media. The presence of galangin, a member of the flavonol class of flavonoid complexes, greatly increased the luminous intensity of Trp in KMnO4–PPA systems. Under optimized conditions, Trp was determined in the 0.05–10 µg/mL range, with a detection limit (3σ) of 5.0 × 10?3 µg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 µg/mL Trp. Two synthetic samples were determined selectively with recoveries of 98.4–100.1% in the presence of other amino acids. The possible mechanism is summarized as follows: excited states of Mn(II)* and Mn(III * types are the main means of generating chemical luminescent species, and Trp concentration and luminescence intensity have a linear relationship, which enables quantitative analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A sensitive and simple chemiluminescent (CL) method for the determination of diclofenac sodium has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between formaldehyde and acidic potassium permanganate. A calibration curve is constructed for diclofenac sodium under optimized experimental parameters over the range 0.040–5.0 µg/mL and the limit of detection is 0.020 µg/mL (3σ). The inter‐assay relative standard deviation for 0.040 µg/mL diclofenac sodium (n = 11) is 2.0%. This method is rapid, sensitive, simple, and shows good selectivity and reproducibility. The proposed method has been successfully applied to the determination of the studied diclofenac sodium in pharmaceutical preparations with satisfactory results. Furthermore, the possible mechanism for the CL reaction has been discussed in detail on the basis of UV and CL spectra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and rapid capillary electrophoresis (CE) with an acidic potassium permanganate chemiluminescence (CL) detection method was developed to determine three alkaloids (curine, sinomenine and magnoflorine) simultaneously. A laboratory‐built CE–CL detection interface was used. The field‐amplified sample stacking technique was applied to the online concentration of alkaloids. Experimental conditions for CE separation and CL detection were investigated in detail to acquire optimum conditions. Under optimal conditions, the three alkaloids were baseline separated within 6 min, and the detection limits (S/N = 3) ranged from 0.03 µg/mL to 0.49 µg/mL. This method was successfully applied to determine the above three alkaloids in Sinomenium acutum, and the result of the determination of sinomenine was in good agreement with those given by high‐performance liquid chromatography and CE methods. In addition, a possible CL reaction mechanism of sinomenine–KMnO4–H2SO4 was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The method is based on the fact that dipyridamole can enhance the chemiluminescence (CL) emission from the redox reaction of bis (2,4,6‐tricholorophenyl) oxalate (TCPO) with H2O2 in the presence of silver nanoparticles (AgNPs). The CL reaction mechanism was discussed. The effect of concentrations of TCPO, H2O2, AgNPs and pH value on the CL reaction were investigated. Under the optimum conditions, the linear dynamic range was 1.0–1000 × 10?9 g/mL and the detection limit (3σ) was 9 × 10?10 g/mL. The relative standard deviation (RSD) was 4.8% for 1.0 × 10?9 g/mL dipyridamole (n = 7). The proposed method has been successfully applied to the determination of dipyridamole tablets and the recovery was 99–103%. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Liu Z  Jia F  Wang W  Wang C  Liu Y 《Luminescence》2012,27(4):297-301
A novel method was developed using molecular imprinting technology (MIT) coupled with flow‐injection chemiluminescence (FI‐CL) for highly sensitive detection of phenformin hydrochloride (PH). The phenformin imprinted polymer was synthesized with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as a cross‐linker. Newly synthesized molecularly imprinted polymer (MIP) particles were packed into a column as a selective recognition element for determination of PH. A CL method for the determination of PH was developed based on the CL reaction of PH with N‐bromosuccinimide sensitized by eosin Y in basic media. The optimization of detection conditions was investigated. The CL intensity responded linearly to the concentration of PH in the range 0.09–2.0 µg/mL, with a correlation coefficient of 0.9920. The detection limit was 0.031 µg/mL. The relative standard deviation for the determination of 1.0 µg/mL PH solution was 1.0% (n = 11). The method was applied to the determination of PH in urine samples, with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A simple and sensitive flow‐injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu–Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02–50 and 0.01–50 µg N/L [R2 = 0.9984 (n = 8) and R2 = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8–4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu–Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO43?, SO42? and HCO3?) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive flow‐injection chemiluminescence method for the determination of acetylsalicylic acid is described. It is based on the enhanced chemiluminescent emission of the alkaline lucigenin–H2O2 system by acetylsalicylic acid. The difference in chemiluminescent intensity of alkaline lucigenin–H2O2 in the presence of acetylsalicylic acid from that in the absence of acetylsalicylic acid was linear at acetylsalicylic acid concentrations in the range of 0.0029–47.37 µg/mL, with detection and quantification limits of 0.0011 and 0.0029 µg/mL, respectively. The correlation coefficient of the working curve was 0.9983. The relative standard deviation (n = 10) for 25 µg/mL acetylsalicylic acid is 1.95%. All experimental parameters were optimized. The method was successfully applied to the determination of acetylsalicylic acid in pharmaceutical preparations. The recovery results obtained by the method were satisfactory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A simple and sensitive flow injection–chemiluminescence (FI–CL) method has been developed for the determination of puerarin, based on the fact that puerarin can greatly inhibit CL of the luminol–H2O2–haemoglobin system. The inhibition of CL intensity was linear to the logarithm of the concentration of puerarin in the range 0.08–10.0 μg/mL (r2 = 0.9912). The limit of detection was 0.05 μg/mL (3σ) and the relative standard deviation (RSD) for 1.0 μg/mL (n = 11) of puerarin solution was 1.4%. Coupled with solid‐phase extraction (SPE) as the sample pretreatment, the determination of puerarin in biological samples and a preliminary pharmocokinetic study of puerarin in rats were performed. The recoveries for plasma and urine at three different concentrations were 89.2–110.0% and 91.4–104.8%, respectively. The pharmacokinetics of puerarin in plasma of rat coincides with the two‐compartment open model. The T1/2α, T1/2β, CL/F, VZ/F, AUC(0 – t), MRT(0 – ∞), Tmax and Cmax were 0.77 ± 0.21 h, 7.55 ± 2.64 h, 2.43 ± 1.02 L/kg/h, 11.40 ± 3.45 L/kg, 56.67 ± 10.65 mg/h/L, 5.04 ± 2.78 h, 1.00 ± 0.35 h and 19.70 ± 4.67 μg/mL, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A highly sensitive and simple method for identifying sulpiride in pharmaceutical formulations and biological fluids is presented. The method is based on increased chemiluminescence (CL) intensity of a luminol–H2O2 system in response to the addition of Cr (III) under alkaline conditions. The CL intensity of the luminol–H2O2–Cr (III) system was greatly enhanced by the addition of sulpiride and the CL intensity was proportional to the concentration of sulpiride in a sample solution. Various parameters affecting the CL intensity were systematically investigated and optimized for determination of the sulpiride in a sample. Under the optimum conditions, the CL intensity was proportional to the concentration of sulpiride in the range of 0.068–4.0 µg/mL, with a good correlation coefficient of 0.997. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 8.50 × 10‐6 µg/mL and 2.83 × 10‐5 µg/mL, respectively. The method presented here produced good reproducibility with a relative standard deviation (RSD) of 2.70% (n = 7). The effects of common excipients and metal ions were studied for their interference effect. The method was validated statistically through recovery studies and successfully applied for the determination of sulpiride in pure form, pharmaceutical preparations and spiked human plasma samples. The percentage recoveries were found to range from 99.10 to 100.05% for pure form, 98.12 to 100.18% for pharmaceutical preparations and 97.9 to 101.4% for spiked human plasma. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A new chemiluminescence (CL) method using flow injection has been described for the rapid and sensitive determination of promazine hydrochloride (PMH). The method is based on the CL reaction of PMH with tris(1,10 phenanthroline)ruthenium(II), [Ru(phen)32+] and Ce(IV) in sulfuric acid medium. Effects of chemical variables were investigated employing central composite design and response surface methodology. Under the optimum conditions, the CL intensity was proportional to the concentration of the drug in solution over the ranges 0.020–0.32 and 0.32–32 µg/mL. The limit of detection (signal‐to‐noise ratio = 3) was 0.012 µg/mL. The method was applied successfully to the determination of PMH in drug formulations and human serum (recovery percentages between 96.7 and 105.0%). The relative standard deviation for 11 replicate determinations of 1.5 µg/mL of PMH was 1.7%. The minimum sampling rate was 100 samples per hour. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The oxidation reaction of H2O2 with KIO4 can produce chemiluminescence (CL) in the presence of the surfactant Tween40 and the CL intensity of the CL system KIO4–H2O2–Tween40 can be strikingly enhanced after injection of tannic acid. On this basis, a flow injection method with CL detection was established for the determination of tannic acid. The method is simple, rapid and effective to determine tannic acid in the range of 7.0 × 10?9 to 1.0 × 10?5 mol/L with a determination limit of 2.3 × 10?9 mol/L. The relative standard deviation is 2.6% for the determination of 5.0 × 10?6 mol/L tannic acid (n = 11). The method has been applied to determine the content of tannic acid in industrial wastewater with satisfactory results. It is believed that the CL reaction formed singlet oxygen 1O2* and the emission was from an excited oxygen molecular pair O2(1Δg)O2(1?g) in the KIO4–H2O2–Tween40 reaction. Tween40 played an important role in enhancing stabilization of the excited oxygen molecular pair O2(1Δg)O2(1?g) and in increasing CL intensity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A simple and sensitive chemiluminescence (CL) method combined with flow injection technique was developed for the determination of naproxen. It was based upon the weak CL signal arising from the reaction of KIO4 with H2O2 being significantly increased by naproxen in the presence of europium(III) ion. The experimental conditions that affected the CL signal were carefully optimized and the CL reaction mechanism was briefly discussed. Under the optimum conditions, the increment of CL intensity was proportional to the concentration of naproxen ranging from 5.0 × 10?8 to 5.0 × 10?6 g/mL. The detection limit was 1 × 10?8 g/mL naproxen and the relative standard deviation for 5.0 × 10?7 g/mL naproxen solution was 2.1% (n = 11). The proposed method was applied to the determination of naproxen in tablets and in spiked human urine samples with satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
An enhanced thiosemicarbazide(TSC)–H2O2 chemiluminescence (CL) system was established and proposed as a new analytical method for determination of β‐lactam antibiotics, ampicillin sodium and amoxicillin at microgram levels. The method is based on the inhibition of CL emission accompanying oxidation of TSC by H2O2 in alkaline medium. The effect of anionic, cationic, and non‐ionic surfactants on the CL emission of the system was studied. Both N‐cetyl‐N,N,N‐trimethylammonium bromide (CTMAB) and Triton X‐100, unlike sodium dodecyl sulfate (SDS), reinforced the CL intensity and were efficient to approximately the same level. The effect of the presence of eight non‐aqueous solvents on the CL system was also investigated. Upon addition of both of the non‐ionic surfactant, Triton X‐100, and the non‐aqueous solvent, N,N‐dimethyl formamide (DMF), the intensity of the CL reaction was increased 100‐fold. This method allows the measurement of 25–545 µg amoxicillin, and 35–350 µg ampicillin sodium. The detection limits are 8 µg for amoxicillin and 9 µg for ampicillin sodium. The relative standard deviations of six replicate measurements of 200 µg amoxicillin and 200 µg ampicillin sodium were 1.9 and 2.1%, respectively. The effect of foreign species on the determination of amoxicillin and ampicillin sodium was also examined. The proposed method was successfully applied to the determination of ampicillin sodium and amoxicillin in some pharmaceutical dosage forms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
In weak acidic medium, the anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) bind with halofluorescein dyes, such as erythrosin (Ery), eosin Y (EY) and eosin B (EB), to form ion‐association complexes, which causes fluorescence quenching of halofluorescein dyes. The quenching values (ΔF) are directly in proportional to the concentrations of bleomycins over the range 0.09–2.5 µg/mL. Based on this, a fluorescence quenching method for the determination of BLMA5 and BLMA2 has been developed. The dynamic range is 0.12–2.5 µg/mL for the determination of BLMA5 and 0.09–2.0 µg/mL for BLMA2, with detection limits (3σ) of 0.04 µg/mL for BLMA5, 0.03 µg/mL for BLMA2, respectively. It has been applied to determine the two antibiotics in human serum, urine and rabbit serum samples. The recovery is in the range 90–102%. In this work, the optimum reaction conditions and the spectral characteristics of the fluorescence are investigated. The reasons for fluorescence quenching are discussed, based on the fluorescence theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Siyu Chen  Fang Zhao 《Luminescence》2012,27(4):279-284
A simple, rapid and precise flow‐injection–chemiluminescence (FI–CL) method is presented for the determination of tenoxicam in pharmaceutical preparations and biological samples. The method is based on the weak chemiluminescence signal arising from the reaction of cerium(IV) in a nitric acid medium with sodium hyposulphite being significantly increased by tenoxicam in the presence of sodium dodecyl benzene sulphonate. Several experimental parameters affecting the CL reaction were examined and optimized systematically. Under the optimum conditions, the CL intensity was proportional to the concentration of tenoxicam in the range 7.0 × 10–11–5.0 × 10–8 g/mL. The detection limit was 2.3 × 10–11 g/mL tenoxicam and the relative standard deviation (RSD) was 2.1% for 1.0 × 10–9 g/mL tenoxicam solution (n = 11). The proposed method was applied to the determination of tenoxicam in pharmaceutical preparations, serum and human urine, with satisfactory results. The possible mechanism of the chemiluminescence reaction is also briefly discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A novel and highly sensitive chemiluminescence (CL) method for the determination of ethanol was developed based on the CdS quantum dots (QDs)–permanganate system. It was found that KMnO4 could directly oxidize CdS QDs in acidic media resulting in relatively high CL emission. A possible mechanism was proposed for this reaction based on UV/Vis absorption, fluorescence and the generated CL emission spectra. However, it was observed that ethanol had a remarkable inhibition effect on this system. This effect was exploited in the determination of ethanol within the concentration range 12–300 µg/L, with detection at 4.3 µg/L. In order to evaluate the capability of presented method, it was satisfactorily utilized in the determination of alcohol in real samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号