首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
Question: How do forest herb species differ from each other in their spatial and temporal dynamics during recovery from volcanic disturbance, and how are dynamics related to species traits? Location: Northeast of Mount St. Helens, Washington, USA. Methods: Following deposition of volcanic tephra in 1980, we measured herb density and cover in permanent 1‐m2 plots during 1980‐2005 in three old‐growth forests with differing tephra depths. For 26 species, we calculated the frequency of plots with residuals (individuals that survived the eruption) versus re‐establishment on the tephra, timing of establishment, turnover, influence of nearby conspecific plants, importance of three components of cover increase, and relationship of flowering frequency to succession. Results: Tephra depth affected species behavior. Deep tephra produced fewer residuals, a greater increase in shoot size, and more shoot turnover; favored species that established late; and allowed establishment of early seral herbs. Nearby presence of conspecifics increased permanence of first establishment and rate of plot occupancy. Most species spread significantly in deep tephra but not in shallow tephra. Among species, frequency of flowering increased with fewer residuals, later establishment, and higher turnover. Species behavior seldom differed among growth forms based on leaf longevity and vegetative spread. Conclusion: Population dynamics at the small‐plot scale differed from those of the entire population. The timing and permanency of establishment and mechanism of expansion differed among species and with tephra depth. There was some consistency among species with similar habitat breadth and degree of flowering, but little consistency associated with the usual growth form classification.  相似文献   

2.
We investigated the relationships between testate amoebae (Arcellinida, Euglyphida), vegetation and water chemistry along environmental gradients in minerotrophic peatlands (fens) in western Poland. We hypothesized that: a) hydrochemistry significantly influences structure of testate amoeba communities, and b) testate amoeba communities are more closely correlated with the hydrochemical variables (environment) than with the vegetation data. Testate amoeba communities and vegetation from 71 sample plots were investigated together with the hydro‐chemistry and hydrology based on 16 environmental variables and vegetation composition. Testate amoeba communities revealed a distinctive poor‐rich gradient in analysed fens. Mineral‐rich habitats, which were dominated by brown mosses, were preferred by a higher number of taxa than acidic habitats, which were dominated by Sphagnum. We recorded a total of 107 testate amoebae taxa. The average species richness of testate amoebae for brown mosses was higher (20) than for Sphagnum (13). We found that testate amoebae communities were similarly correlated with vascular plants, mosses and environmental parameters. Results of direct ordination demonstrate that hydrology, pH, Mg2+ and sodium remain the most important environmental control for the entire data set. CCA showed that in case of brown mosses hydrology, sodium and oxygen affect testate amoeba communities significantly whereas in Sphagnum only sodium emerge as most significant determining testate amoeba assemblages. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands  相似文献   

4.
The aim of this study is to detect how vegetation development proceeds after Sphagnum-peat mining and how physical and chemical factors in groundwater are related to the revegetation patterns in Sarobetsu mire, Hokkaido, Japan. A total of 189 plots on peat-mining sites were set in a chronosequence and 18 plots were set on unmined control sites. A vegetation survey was conducted, and seasonal changes in groundwater levels and chemistry (pH, electrical conductance, total nitrogen, total phosphorus, anions, and cations) were monitored. Species richness and plot cover tended to increase with increasing age, but were significantly lower in mined sites than in unmined sites dominated by Sphagnum spp. The trends in vegetation change were (1) bare ground, (2) grasslands dominated by grasses and sedges, e.g., Rhyncohospora alba, Phragmites communis, and Moliniopsis japonica and (3) Sphagnum-dominated vegetation. The characteristics of groundwater level during the plant-growth period mostly determined vegetation recovery, i.e., Sphagnum establishment was promoted when groundwater declined greatly in early summer. The patterns of temporal vegetation changes affected by groundwater characteristics were detected by chronological sequence, and hydrological factors in groundwater were more important for revegetation than chemical factors. The original vegetation has not returned after three decades.  相似文献   

5.
Zobel  Donald B.  Antos  Joseph A.  Fischer  Dylan G. 《Plant Ecology》2022,223(4):381-396

Several processes bury plants, but sediment can also be subsequently removed, often by delayed erosion. Thus, the ability to survive multiple years of burial and to respond when released are important to vegetation changes and population dynamics. We experimentally evaluated the effects of delayed removal of tephra (aerially transported volcanic ejecta) in an old-growth forest understory near Mount St. Helens, using 1-m2 plots assigned to three treatments: tephra removed 4 months after deposition (50 plots), tephra removed 28 months after deposition (the delayed erosion treatment, 50 plots), and undisturbed, natural tephra (100 plots). Prior to tephra removal, species density, cover, shoot density, and shoot size in the delayed erosion treatment were all similar to values in natural plots and significantly less than values in plots cleared initially, indicating that 24 months of additional burial adversely affected understory plants. However, all attributes eventually approached pre-eruption values for shrubs and herbs, indicating that erosion greatly facilitated vegetation recovery. Responses varied substantially among species and growth forms. Overall, our experimental results indicate that some plants of most species can respond effectively after release from burial of at least three growing seasons. In addition, the delay of erosion retards ecosystem recovery relative to early erosion, facilitates recovery relative to no erosion, and modifies the trajectory of post-disturbance vegetation change.

  相似文献   

6.
Native plant establishment is limited by harsh environmental conditions in areas affected by tephra deposition following volcanic eruptions. Late‐successional species might be lacking even decades after the disturbance. We assessed the effectiveness of pine‐bark mulch, a by‐product of sustainable timber production in the study area, in promoting the establishment and survival of a late‐successional species (Pinus pseudostrobus) and a nitrogen‐fixing legume (Lupinus elegans). We established a factorial experiment in areas covered with tephra during the eruption of the Paricutín volcano in the state of Michoacán, Mexico. After 1 year, P. pseudostrobus survival was significantly higher (p < 0.001) in plots with pine‐bark mulching (46.5%) than in plots without mulching (21.8%). After 2 years, surviving pines with mulching were significantly taller (p= 0.03) than pines without mulching (45.3 ± 3.8 cm and 31.2 ± 3.7 cm, respectively). Lupinus elegans plants survived longer when grown in plots with pine‐bark mulching than without mulching. Mulching reduced tephra temperatures during the dry season (when temperatures can reach up to 58°C 4 cm below the surface of bare tephra). Lupinus elegans plants were affected by herbivory by small rodents, run‐off, and frost at the end of the growing season. Our results suggest that mulching can ameliorate harsh environmental conditions on sites covered with tephra while incorporating a by‐product of sustainable forestry into restoration practice.  相似文献   

7.
Plant establishment on sites affected by major volcanic disturbances is limited by several factors, such as lack of suitable microsites for germination and establishment in sites affected by tephra from volcanic eruptions. Even after long periods of time, tephra deposited over un-vegetated areas (agricultural fields and other barren areas) lack closed vegetation cover and in many cases late successional species. To assess limiting factors for plant establishment, a field survey in a tephra deposit from the Paricutin volcano eruption (19°30′42.4′′ N, 102°12′03.0′′) and greenhouse experiments were carried out. The field survey determined the relationship between tephra depth and vegetation distribution. Greenhouse experiments determined the effect of tephra depth on establishment and growth of two dominant species in the tephra deposit surveyed, Eupatorium glabratum and Lupinus elegans. Our results suggest that size and spatial distribution of vegetation patches is related to tephra depth in the field (77% of the vegetation patches were on tephra 38.8 cm deep or less and only 2% on tephra of more than 46.8 cm). Under greenhouse conditions, Eupatorium glabratum and Lupinus elegans height sharply decreased as depth of the tephra layer increased. Lupinus elegans plants growing in tephra less than 30 cm deep had a mean weight of 10.56 g (±0.53 g) compared with 3.11 g (±0.46 g) for plants growing in tephra more than 30 cm deep. Our results suggest that tephra depth is a limiting factor for canopy development in barren areas affected by tephra deposition.  相似文献   

8.
Abstract. This paper reports on vegetation dynamics on terrestrial, temperate grassland sites at the upper range of the productivity scale, i.e. on abandoned sewage fields (fields once used for waste water disposal) at Berlin‐Blankenfelde, Germany. I studied regeneration and the influence of different management practices (removal of top soil and mowing in late summer). Changes in species composition and cover were followed on permanent plots of 2m × 2m size through five years of vegetation development. At the outset of the experiment the abandoned fields were dominated by dense Urtica dioica /Elymus repens stands. Species richness was 7 species/ 4m2, and it remained low on unmanaged plots during the time of observation (7.6 species/plot in year 5). Removal of 20 cm of top soil caused a severe decline of Urtica and a large increase in species richness (21 species in year 1 after disturbance). Mowing was slightly higher compared with unmown plots on both initially excavated and unexcavated plots. Total cover was always near 100 % (except immediately after top soil removal). Colonization of bare soil was very rapid and in late summer of the first year after disturbance cover already increased towards 100%. On all plots the vegetation was mostly dominated by perennial herbs and grasses. Winter season gaps are occupied by Galium aparine, a large‐seeded annual scrambling climber. Monocarpic perennials behaved as winter annuals in most cases. Woody species were inhibited by dense above‐ground biomass and litter cover. The paper questions whether succession on abandoned sewage fields may proceed towards a woodland stage and advises how vegetation of such hyper‐eutrophicated sites can be managed towards higher diversity.  相似文献   

9.
黄华苑  卜荣平  谢海  侯绍兵  武正军 《生态学报》2019,39(17):6443-6451
在广西猫儿山自然保护区的山顶湖、三江源、野人湖等地区,基于植被类型、水体类型、岸边条件、卵袋悬挂物、水中覆盖物、人为干扰程度等20种生境因子,通过61个样方(26个选择样方和35个对照样方),对猫儿山小鲵繁殖期的生境选择做进行了研究,并得出以下4个主要结论:(1)在基于描述型生态因子的研究中,结果显示选择样方与对照样方在水体类型、岸边条件、水中覆盖物3种因子上差异显著,而植被类型、卵袋悬挂物、人为干扰程度3种生态因子对其生境选择无显著影响。(2)基于14种数值型生态因子的研究结果显示,选择样方和对照样方间的植被盖度、水体面积、水体流速和水底泥沙比方面具有显著差异。植被盖度较低、水体面积较大的水域、水体流速低和水底泥沙比较低的水域是猫儿山小鲵的优选繁殖地。(3)基于14种数值型生态因子的逐步判别表明,通过植被盖度和水底泥沙比2个生态因子可分辨选择样方和对照样方,正确判别率达80.3%,且对于检验也具有最大的贡献值,分别为0.840和0.622。(4)对猫儿山小鲵卵袋对数和14种数值型生态因子的逐步回归分析结果显示猫儿山小鲵在繁殖期生境选择与地表湿度显著正相关,与植被盖度呈显著负相关,高地表湿度和低植被盖度对猫儿山小鲵的产卵量起促进作用。猫儿山小鲵繁殖期间偏好的微生境为较低植被盖度、较大面积水体和较低流速、低水底泥沙、多水中覆盖物、复杂岸边条件的静水型水塘,与选择偏好的微生境相关的生态因子是猫儿山小鲵繁殖期生境选择的主要因子。  相似文献   

10.
Question: Is ombrotrophic bog vegetation in an oceanic region of southwestern Sweden changing in the same direction over a five year period (1999 ‐ 2004) as northwest European bogs in the last 50 years, i.e. towards drier and more eutrophic vegetation? Location: The province of Halland, southwestern Sweden. Methods: Changes in species composition were monitored in 750 permanently marked plots in 25 ombrotrophic bogs from 1999 to 2004. Changes in species occurrences and richness were analysed and a multivariate statistical method (DCA) was used to analyse vegetation changes. Results: The species composition changed towards wetter rather than drier conditions, which is unlike the general pattern of vegetation change on bogs in northwestern Europe. Species typical of wetter site conditions including most Sphagnum species increased in abundance on the bogs until 2004. The total number of species per plot increased, mostly due to the increased species richness of Sphagnum species. Nitrogen‐demanding (eutrophic) species increased in occurrence. Conclusions: Ombrotrophic bog vegetation in an oceanic region in Sweden became wetter and was resilient to short‐term climatic shifts, after three years of below normal precipitation followed by several years with normal precipitation levels. Shifts towards more nitrogen demanding species were rapid in this region where the deposition levels have been high for several decades.  相似文献   

11.
Abstract. Vegetation, water table depth and water chemistry of 16 peatlands in the southern Alps, Italy, were analysed in 115 sample plots. A poor-rich gradient could be detected along the first axis of a partial Detrended Canonical Correspondence Analysis. Both vegetation and hydrochemistry vary gradually along the gradient. Vascular plants have much broader niches along the gradient than bryophytes. Mosses (except Sphangnum) and hepatics have narrower niches than Sphagnum. The various species of Sphagnum segregate more clearly from each other along the moisture gradient than along the poor-rich one. The positions of species optima along the latter gradient largely reflect the ecological preferences of mire plants in peatlands with respect to nutrient status.  相似文献   

12.
Volcanic deposits have frequently been studied from a successional point of view, but the main focus has been on vegetation dynamics, and less frequently on the development of invertebrate and microbial communities and soil properties. Biological legacies, understood as living organisms, seeds, organic debris and biologically derived patterns in soils and understories, are important in succession, and may also influence soil development on young volcanic deposits. The volcanic eruption of the Chilean Puyehue–Cordón Caulle complex (Northern Patagonia) in June 2011 deposited tephra in southern Argentina. Sandy tephra up to 30 cm deep was deposited in the De los Siete Lagos road in Nahuel Huapi and Lanín National Parks, where a road under construction had exposed sub‐soil lacking vegetation, while adjacent forest supported a canopy of Nothofagus dombeyi with Chusquea culeou in the understory. This situation provided a unique opportunity to study soil development and succession on nearby young volcanic deposits with different biological legacies, considering several biological communities. Our hypothesis is that 29 months after the eruption the tephra in the forest would have higher organic C, total N, available P and biological activity than the tephra deposited on the roadside. Plant cover and species richness, invertebrate abundance and richness, as well as substrate respiration, N mineralization and enzymatic activities were highest in the forest. In addition, organic carbon and nutrient incorporation rates in the forest were twice those in the roadside substrate. Nevertheless, two and a half years after the eruption, most variables remained an order of magnitude lower than values expected for temperate forest soils. Surviving canopy and understory play a key role in ecosystem recovery after tephra deposition, providing seeds and organic matter and establishing conditions appropriate for plants, invertebrates, and microorganisms that would in turn accelerate soil development.  相似文献   

13.
The species-rich calcareous grassland communities in Europe are gradually disappearing due to lack of management such as grazing or cultivation, resulting in decalcification and reduction of gaps in the vegetation. In this study, experimental soil perturbation (deep and shallow) was performed in degenerated sandy grassland in plots with a size of 8 × 8 m, using a randomised block design. The hypothesis that soil perturbation that inverts the soil layers decreases nutrient availability, creates vegetation gaps and thereby selects for desirable species was tested through comparisons with untreated controls as well as with nearby target habitats. The deep perturbation was designed to bring CaCO3 up to the surface, whereas the shallow perturbation tested the effect of disturbance alone. The effects of soil perturbation on soil chemistry, vegetation and beetle communities were analysed for the 2 years following the treatments. Increased pH and calcium concentration, and decreased nitrogen and phosphorus availability, showed that deep perturbation was successful in restoring the soil chemistry to levels similar to those of the target habitat. Perturbated plots were rapidly colonised by the acid tolerant grass Corynephorus canescens, but the slow colonisation of the threatened calcicole species Koeleria glauca was an indication that the vegetation could be evolving towards the target vegetation. Six red-listed beetle species associated with open, dry grasslands were found, out of which four were found only in perturbated plots, although this could not be statistically tested. In conclusion, it may take many years or even decades for the establishment of desirable flora, and seeding could therefore be a suitable method of increasing the rate of succession.  相似文献   

14.
Abstract The savannas of South America support a relatively diverse ant fauna, but little is known about the factors that influence the structure and dynamics of these assemblages. In 1998 and 2002, we surveyed the ground‐dwelling ant fauna and the fauna associated with the woody vegetation (using baits and direct sampling) from an Amazonian savanna. The aim was to evaluate the influence of vegetation structure, disturbance by fire and dominant ants on patterns of ant species richness and composition. Variations in the incidence of fires among our 39 survey plots had no or only limited influence on these patterns. In contrast, spatial variations in tree cover and cover by tall grasses (mostly Trachypogon plumosus), significantly affected ant species composition. Part of the variation in species richness among the study plots correlated with variations in the incidence of a dominant species (Solenopsis substituta) at baits. Ant species richness and composition also varied through time, possibly as an indirect effect of changes in vegetation cover. In many plots, and independently of disturbance by fire, there was a major increase in cover by tall grasses, which occupied areas formerly devoid of vegetation. Temporal changes in vegetation did not directly explain the observed increase in the number of ant species per plot. However, the incidence of S. substituta at baits declined sharply in 2002, especially in plots where changes in vegetation cover were more dramatic, and that decline was correlated with an increase in the number of ground‐dwelling species, a greater turnover of bait‐recruiting species and the appearance of the little fire ant Wasmannia auropunctata. The extent to which these changes in fact resulted from the relaxation of dominance by S. substituta is not clear. However, our results strongly suggest that the ant fauna of Amazonian savannas is affected directly and indirectly by the structure of the vegetation.  相似文献   

15.
As invasive plant species are a major driver of change on oceanic islands, their control is an important challenge for restoration ecology. The post‐control recovery of native vegetation is crucial for the treatments to be considered successful, but few studies have evaluated the effects of control measures on both target and non‐target species. To investigate the efficiency of manual control of Cinchona pubescens and its impacts on the sub‐tropical highland vegetation of Santa Cruz Island, Galápagos, vegetation was sampled before and up to two years after control was carried out in permanent sampling plots. Manual control significantly reduced Cinchona density. Due to regeneration from the seed or bud bank, follow‐up control is required, however, for long‐term success. Despite heavy disturbance from tree uprooting, herbaceous angiosperms were little affected by the control actions, whereas dominant fern species declined in cover initially. Most native, endemic, and other introduced species regained their pre‐control levels of cover 2 years after control; some species even exceeded them. The total number of species significantly increased over the study period, as did species diversity. The native highland vegetation appeared to be resilient, recovering to a level probably more characteristic of the pre‐invasion state without human intervention after Cinchona control. However, some introduced species seemed to have been facilitated by the control actions, namely Stachys agraria and Rubus niveus. Further monitoring is needed to confirm the long‐term nature of vegetation change in the area.  相似文献   

16.
Peatlands in Australia and New Zealand are composed mainly of Restionaceous and Cyperaceous peats, although Sphagnum peat is common in wetter climates (Mean Annual Precipitation > 1,000 mm) and at higher altitudes (>1,000 m). Experimental trials in two contrasting peatland types—fire‐damaged Sphagnum peatlands in the Australian Alps and cutover restiad bogs in lowland New Zealand—revealed similar approaches to peatland restoration. Hydrological restoration and rehydration of drying peats involved blocking drainage ditches to raise water tables or, additionally in burnt Sphagnum peatlands, peat‐trenching, and the use of sterilized straw bales to form semipermanent “dam walls” and barriers to spread and slow surface water movement. Recovery to the predisturbance vegetation community was most successful once protective microclimates had been established, either artificially or naturally. Specifically, horizontally laid shadecloth resulted in Sphagnum cristatum regeneration rates and biomass production 3–4 times that of unshaded vegetation (Australia), and early successional nurse shrubs facilitated establishment of Sporadanthus ferrugineus (New Zealand) within 2–3 years. On severely burnt or cutover sites, a patch dynamic approach using transplants of Sphagnum or creation of restiad peat “islands” markedly improved vegetation recovery. In New Zealand, this approach has been scaled up to whole mine‐site restoration, in which the newly vegetated islands provide habitat and seed sources for plants and invertebrates to spread onto surrounding areas. Although a vegetation cover can be established relatively rapidly in both peatland types, restoration of invertebrate communities, ecosystem processes, and peat hydrological function and accumulation may take many decades.  相似文献   

17.
Quantifying abundance and distribution of plant species can be difficult because data are often inflated with zero values due to rarity or absence from many ecosystems. Terrestrial fruticose lichens (Cladonia and Cetraria spp.) occupy a narrow ecological niche and have been linked to the diets of declining caribou and reindeer populations (Rangifer tarandus) across their global distribution, and conditions related to their abundance and distribution are not well understood. We attempted to measure effects related to the occupancy and abundance of terrestrial fruticose lichens by sampling and simultaneously modeling two discrete conditions: absence and abundance. We sampled the proportion cover of terrestrial lichens at 438 vegetation plots, including 98 plots having zero lichens. A zero‐inflated beta regression model was employed to simultaneously estimate both the absence and the proportion cover of terrestrial fruticose lichens using fine resolution satellite imagery and light detection and ranging (LiDAR) derived covariates. The probability of lichen absence significantly increased with shallower groundwater, taller vegetation, and increased Sphagnum moss cover. Vegetation productivity, Sphagnum moss cover, and seasonal changes in photosynthetic capacity were negatively related to the abundances of terrestrial lichens. Inflated beta regression reliably estimated the abundance of terrestrial lichens (R2 = .74) which was interpolated on a map at fine resolution across a caribou range to support ecological conservation and reclamation. Results demonstrate that sampling for and simultaneously estimating both occupancy and abundance offer a powerful approach to improve statistical estimation and expand ecological inference in an applied setting. Learnings are broadly applicable to studying species that are rare, occupy narrow niches, or where the response variable is a proportion value containing zero or one, which is typical of vegetation cover data.  相似文献   

18.
Abstract. Within an ombrogenous part of N. Kisselbergmosen, Rødenes, SE Norway, fine‐scale changes in species abundance, successional trends relative to the main gradients (as represented by DCA axes), and co‐ordinated change within pairs of the bottom layer species are studied. Data sets were sampled twice with a five‐year interval, and included species abundance and cover of mud bottom, naked peat and litter in 436 sample plots (16 cm× 16 cm), and species abundance in 6976 subplots (4 cm× 4 cm). Depth from the surface of subplots to the water table was estimated in 1991. Most summers and growing seasons were somewhat drier than normal in the 5‐yr period. The area covered by mud‐bottom, naked peat and litter increased significantly, as did the frequencies of the dwarf shrubs Calluna vulgaris and Andromeda polifolia in hummocks and upper lawn. Sample plots were significantly displaced downward the peat productivity gradient (DCA 2), reflecting the reduced cover of many bottom layer species, including all Sphagnum spp. Significant coordinated changes in cover of bottom layer species are described. The changes observed in hummocks support the existence of a local regeneration cycle, as suggested by other researchers. Some of the vegetation changes seem parallel to those reported from areas with a higher nitrogen deposition, but it is not likely that nitrogen deposition alone is the major cause of the observed changes. Between‐year variation in population size and climatic fluctuations may as well explain the observed changes.  相似文献   

19.
Traditionally mire ecosystems (especially bogs) have been viewed as stable systems with slow changes in the vegetation over time. In this study the mire Åkhultmyren, south‐central Sweden was re‐investigated in 1997 after 40 yr of continued natural development. The results show a high degree of dynamics in a Sphagnum dominated bog and fen. Altogether 97 vascular plant and bryophyte species were recorded in the two inventories of the bog and poor fen vegetation. pH and electrical conductivity in the mire water were also surveyed. In 1997 we found 10 new species and that 8 species had disappeared since 1954 but the over‐all mean number of species per plot (size 400 m2) had hardly changed. However, 21% of the species increased and 21% decreased significantly in frequency. Most of the species that decreased in frequency were low‐grown vascular plants, most common in wet microhabitats. Vascular plant species that increased in frequency included trees (defined as >1.3 m in height) and were generally taller than the unchanged or decreasing species. The frequency of dwarf shrubs and hummock bryophytes increased too. Areas with an initial pH of 4.5–5.0 showed the strongest decrease in pH, coinciding with an enlarged distribution of some Sphagnum species. The species diversity increased on the bog, but decreased in the wettest parts of the fen, where the pH also decreased. Species with unchanged or increasing frequency often showed high capacity to colonise new plots. On average the sum of gains and losses of species in the plots in 1997 was ca 50% of the species number in 1954. The vegetation changes indicate a drier mire surface and an increased availability of nitrogen. The increased tree cover may have triggered further changes in the plant cover.  相似文献   

20.
Canonical correspondece analysis (CCA) was applied to explore revegetation patterns during early succession on Mt Usu. Vegetation was buried by deposits of ash and pumice from 1 to 3 m in depth from the 1977–78 eruptions. Three habitats were selected: tephra, tephra in gully and original surface. Plant density and plant cover data were analyzed separately. Environmental factors consisted of five quanticative variables (organic matter, elevation, distance from colonizing source, erosion and deposition of volcanic deposits) and three nominal variables (habitat types: tephra, tephra in gully and original surface). Canonical correspondence analysis showed that the original surface played a special role in vegetation development because the old topsoil supplied both nutrients and seed-bank species. The CCA also suggested that the environmental factors that influence plant density and cover differ. Distance from colonizing source affected plant density while erosion affected cover. Using CCA, factors could be distinguished that influenced seedling establishment from vegetation expansion and vegetation recovery dynamics could also be more clearly interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号