首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2012年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1986年   1篇
排序方式: 共有25条查询结果,搜索用时 48 毫秒
1.
Summary We report here the complete amino acid sequences of the cytosolic and mitochondrial aspartate aminotransferases from horse heart. The two sequences can be aligned so that 48.1% of the amino acid residues are identical. The sequences have been compared with those of the cytosolic isoenzymes from pig and chicken, the mitochondrial isoenzymes from pig, chicken, rat, and human, and the enzyme fromEscherichia coli. The results suggest that the mammalian cytosolic and mitochondrial isoenzymes have evolved at equal and constant rates whereas the isoenzymes from chicken may have evolved somewhat more slowly. Based on the rate of evolution of the mammalian isoenzymes, the geneduplication event that gave rise to cytosolic and mitochondrial aspartate aminotransferases is estimated to have occurred at least 109 years ago. The cytosolic and mitochondrial isoenzymes are equally related to the enzyme fromE. coli; the prokaryotic and eukaryotic enzymes diverged from one another at least 1.3×109 years ago.  相似文献   
2.
3.
Pneumococcal lipoteichoic acid (LTA) is known to have a completely different chemical structure compared with that of Staphylococcus aureus: the polyglycerophosphate in the backbone is replaced in the pneumococcal LTA by a pentamer repeating unit consisting of one ribitol and a tetrasaccharide carrying the unusual substituents phosphocholine and N-acetyl-D-galactosamine. Neither D-alanine nor N-acetyl-D-glucosamine, which play central roles in the biological activity of the staphylococcal LTA, has been reported. The extraction using butanol is more gentle compared with the previously reported chloroform-methanol extraction and results in a higher yield of LTA. We characterized the LTA of two different strains of Streptococcus pneumoniae:R6 (serotype 2) and Fp23 (serotype 4). NMR analysis confirmed the structure of LTA from R6 but showed that its ribitol carries an N-acetyl-D-galactosamine substituent. The NMR data for the LTA from Fp23 indicate that this LTA additionally contains ribitol-bound D-alanine. Dose-response curves of the two pneumococcal LTAs in human whole blood revealed that LTA from Fp23 was significantly more potent than LTA from R6 with regard to the induction of all cytokines measured (tumor necrosis factor, interleukin-1 (IL-1), IL-8, IL-10, granulocyte colony-stimulating factor, and interferon gamma). However, other characteristics, such as lack of inhibition by endotoxin-specific LAL-F, Toll-like receptor 2 and not 4 dependence, and lack of stimulation of neutrophilic granulocytes, were shared by both LTAs. This is the first report of a difference in the structure of LTA between two pneumococcal serotypes resulting in different immunostimulatory potencies.  相似文献   
4.
Serine hydroxymethyltransferases (SHMTs) play an essential role in one‐carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal‐5′‐phosphate‐bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H4MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C‐terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation‐π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide‐aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg‐Tyr cation‐π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes. Proteins 2014; 82:3437–3449. © 2014 Wiley Periodicals, Inc.  相似文献   
5.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal‐5′‐phosphate (PLP)‐dependent enzyme belonging to the fold type I superfamily, which catalyzes in vivo the reversible conversion of l ‐serine and tetrahydropteroylglutamate (H4PteGlu) to glycine and 5,10‐methylenetetrahydropteroylglutamate (5,10‐CH2‐H4PteGlu). The SHMT from the psychrophilic bacterium Psychromonas ingrahamii (piSHMT) had been recently purified and characterized. This enzyme was shown to display catalytic and stability properties typical of psychrophilic enzymes, namely high catalytic activity at low temperature and thermolability. To gain deeper insights into the structure–function relationship of piSHMT, the three‐dimensional structure of its apo form was determined by X‐ray crystallography. Homology modeling techniques were applied to build a model of the piSHMT holo form. Comparison of the two forms unraveled the conformation modifications that take place when the apo enzyme binds its cofactor. Our results show that the apo form is in an “open” conformation and possesses four (or five, in chain A) disordered loops whose electron density is not visible by X‐ray crystallography. These loops contain residues that interact with the PLP cofactor and three of them are localized in the major domain that, along with the small domain, constitutes the single subunit of the SHMT homodimer. Cofactor binding triggers a rearrangement of the small domain that moves toward the large domain and screens the PLP binding site at the solvent side. Comparison to the mesophilic apo SHMT from Salmonella typhimurium suggests that the backbone conformational changes are wider in psychrophilic SHMT. Proteins 2014; 82:2831–2841. © 2014 Wiley Periodicals, Inc.  相似文献   
6.
Epidemiological data on the impact of hypertensive crises (emergencies and urgencies) on referral to the Emergency Departments (EDs) are lacking, in spite of the evidence that they may be life-threatening conditions. We performed a multicenter study to identify all patients aged 18 years and over who were admitted to 10 Italian EDs during 2009 for hypertensive crises (systolic blood pressure ≥220 mmHg and/or diastolic blood pressure ≥120 mmHg). We classified patients as affected by either hypertensive emergencies or hypertensive urgencies depending on the presence or the absence of progressive target organ damage, respectively. Logistic regression analysis was then performed to assess variables independently associated with hypertensive emergencies with respect to hypertensive urgencies. Of 333,407 patients admitted to the EDs over the one-year period, 1,546 had hypertensive crises (4.6/1,000, 95% CI 4.4–4.9), and 23% of them had unknown hypertension. Hypertensive emergencies (n = 391, 25.3% of hypertensive crises) were acute pulmonary edema (30.9%), stroke (22.0%,), myocardial infarction (17.9%), acute aortic dissection (7.9%), acute renal failure (5.9%) and hypertensive encephalopathy (4.9%). Men had higher frequency than women of unknown hypertension (27.9% vs 18.5%, p<0.001). Even among known hypertensive patients, a larger proportion of men than women reported not taking anti-hypertensive drug (12.6% among men and 9.4% among women (p<0.001). Compared to women of similar age, men had higher likelihood of having hypertensive emergencies than urgencies (OR = 1.34, 95% CI 1.06–1.70), independently of presenting symptoms, creatinine, smoking habit and known hypertension. This study shows that hypertensive crises involved almost 5 out of 1,000 patients-year admitted to EDs. Sex differences in frequencies of unknown hypertension, compliance to treatment and risk of hypertensive emergencies might have implications for public health programs.  相似文献   
7.
8.
The reaction catalyzed by serine hydroxymethyltransferase (SHMT), the transfer of Cbeta of serine to tetrahydropteroylglutamate, represents in Eucarya and Eubacteria a major source of one-carbon (C1) units for several essential biosynthetic processes. In many Archaea, C1 units are carried by modified pterin-containing compounds, which, although structurally related to tetrahydropteroylglutamate, play a distinct functional role. Tetrahydromethanopterin, and a few variants of this compound, are the modified folates of methanogenic and sulfate-reducing Archaea. Little information on SHMT from Archaea is available, and the metabolic role of the enzyme in these organisms is not clear. This contribution reports on the purification and characterization of recombinant SHMT from the hyperthermophilic methanogen Methanococcus jannaschii. The enzyme was characterized with respect to its catalytic, spectroscopic, and thermodynamic properties. Tetrahydromethanopterin was found to be the preferential pteridine substrate. Tetrahydropteroylglutamate could also take part in the hydroxymethyltransferase reaction, although with a much lower efficiency. The catalytic features of the enzyme with substrate analogues and in the absence of a pteridine substrate were also very similar to those of SHMT isolated from Eucarya or Eubacteria. On the other hand, the M. jannaschii enzyme showed increased thermoactivity and resistance to denaturating agents with respect to the enzyme purified from mesophilic sources. The results reported suggest that the active site structure and the mechanism of SHMT are conserved in the enzyme from M. jannaschii, which appear to differ only in its ability to bind and use a modified folate as substrate and increased thermal stability.  相似文献   
9.
10.
In the present study we performed an integrated proteomics, interactomics and metabolomics analysis of Longissimus dorsi tender and tough meat samples from Chianina beef cattle. Results were statistically handled as to obtain Pearson's correlation coefficients of the results from Omics investigation in relation to canonical tenderness-related parameters, including Warner Bratzler shear force, myofibrillar degradation (at 48 h and 10 days after slaughter), sarcomere length and total collagen content. As a result, we could observe that the tender meat group was characterized by higher levels of glycolytic enzymes, which were over-phosphorylated and produced accumulation of glycolytic intermediates. Oxidative stress promoted meat tenderness and elicited heat shock protein responses, which in turn triggered apoptosis-like cascades along with PARP fragmentation. Phosphorylation was found to be a key process in post mortem muscle conversion to meat, as it was shown not only to modulate glycolytic enzyme activities, but also mediate the stability of structural proteins at the Z-disk. On the other hand, phosphorylation of HSPs has been supposed to alter their functions through changing their affinity for target interactors. Analogies and breed-specific differences are highlighted throughout the text via a direct comparison of the present results against the ones obtained in a parallel study on Maremmana Longissimus dorsi. It emerges that, while the main cornerstones and the final outcome are maintained, post mortem metabolism in tender and tough meat yielding individuals is subtly modulated via specific higher levels of enzymes and amino acidic residue phosphorylation in a breed-specific fashion, and whether calcium homeostasis dysregulation was a key factor in Maremmana, higher early post mortem phosphocreatine levels in the Chianina tender group could favor a slower and prolonged glycolytic rate, prolonging the extent of the minimum hanging period necessary to obtain tender meat from this breed by a few days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号