首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Five northern fulmars (Fulmarus glacialis) were tracked by satellite transmitters from their breeding colony in the Canadian high Arctic (Cape Vera, Devon Island, NT) to their wintering grounds in the northwest Atlantic Ocean. In both 2004 and 2005, fulmars left northern Baffin Bay in mid- to late September, and migrated south to Davis Strait in less than 1 week, after which movements were erratic. In October and November, the birds were widely distributed, but by December through March, they tended to remain in the Labrador Sea between 50 and 55°N. Average flight speed was 35 km/h with a maximum of 64 km/h, and over their entire transmission periods, the five traveled on average 84 km/day. Our work suggests that the North Atlantic northern fulmar population may be panmictic in winter, with the Labrador Sea as a key wintering site for fulmars from high Arctic Canada.  相似文献   

2.
Two putative populations of hooded seals (Cystophora cristata) occur in the North Atlantic. The Greenland Sea population pup and breed on the pack ice near Jan Mayen ('West Ice') while the Northwest Atlantic population is thought to pup in the Davis Strait, in the Gulf of St. Lawrence (the 'Gulf'), and off southern Labrador or northeast Newfoundland (the 'Front'). We used microsatellite profiling of 300 individuals at 13 loci and mitochondrial DNA sequencing of the control region of 123 individuals to test for genetic differentiation between these four breeding herds. We found no significant genetic differences between breeding areas, nor evidence for cryptic nor higher level genetic structure in this species. The Greenland Sea breeding herd was genetically most distant from the Northwest Atlantic breeding areas; however, the differences were statistically nonsignificant. Our data therefore suggest that the world's hooded seals comprise a single panmictic genetic population.  相似文献   

3.
Dunlin Calidris alpina is one of the most abundant shorebirds using coastal habitats in the East Atlantic migratory flyway, that links arctic breeding locations (Greenland to Siberia) with wintering grounds (West Europe to West Africa). Differential migration and winter segregation between populations have been indicated by morphometrics and ringing recoveries. Here, we analyse the potential of genetic markers (mitochondrial DNA – mtDNA) to validate and enhance such findings. We compared mtDNA haplotypes frequencies at different wintering sites (from north-west Europe to West Africa). All birds from West Africa had western (European) haplotypes, while the eastern (Siberian) haplotypes were only present in European winter samples, reaching higher frequencies further north in Europe. Compilation of published results from migrating birds also confirmed these differences, with the sole presence of European haplotypes in Iberia and West Africa and increasingly higher frequencies of Siberian haplotypes from south-west to north-west Europe. Comparison with published haplotype frequencies of breeding populations shows that birds from Greenland, Iceland, and North Europe were predominant in wintering grounds in West Africa, while populations wintering in West Europe originated from more eastern breeding grounds (e.g. North Russia). These results show that genetic markers can be used to enhance the integrative monitoring of wintering and breeding populations, by providing biogeographical evidence that validate the winter segregation of breeding populations.  相似文献   

4.
The migration route of Red‐necked Phalarope populations breeding on North Atlantic islands has been subject to considerable speculation. Geolocator tags were fitted to nine Red‐necked Phalaropes breeding in northern Scotland to assess whether they migrated to Palaearctic or Nearctic wintering grounds. Of four birds known to return, two had retained their tags, of which one was recaptured. This male Phalarope left Shetland on 1 August 2012 and crossed the Atlantic Ocean to the Labrador Sea off eastern Canada in 6 days, then moved south to reach Florida during September, crossed the Gulf of Mexico into the Pacific Ocean and reached an area between the Galapagos Islands and the South American coast by mid‐October, where it remained until the end of April, returning by a similar route until the tag battery failed as the bird was crossing the Atlantic Ocean. The total migration of 22 000 km is approximately 60% longer than the previously assumed route to the western part of the Arabian Sea, and this first evidence of migration of a European breeding bird to the Pacific Ocean also helps to indicate the possible migratory route of the large autumn movements of Red‐necked Phalaropes down the east coast of North America.  相似文献   

5.
The arctic tern Sterna paradisaea completes the longest known annual return migration on Earth, traveling between breeding sites in the northern arctic and temperate regions and survival/molt areas in the Antarctic pack‐ice zone. Salomonsen (1967, Biologiske Meddelelser, Copenhagen Danske Videnskabernes Selskab, 24 , 1) put forward a hypothetical comprehensive interpretation of this global migration pattern, suggesting food distribution, wind patterns, sea ice distribution, and molt habits as key ecological and evolutionary determinants. We used light‐level geolocators to record 12 annual journeys by eight individuals of arctic terns breeding in the Baltic Sea. Migration cycles were evaluated in light of Salomonsen's hypotheses and compared with results from geolocator studies of arctic tern populations from Greenland, Netherlands, and Alaska. The Baltic terns completed a 50,000 km annual migration circuit, exploiting ocean regions of high productivity in the North Atlantic, Benguela Current, and the Indian Ocean between southern Africa and Australia (sometimes including the Tasman Sea). They arrived about 1 November in the Antarctic zone at far easterly longitudes (in one case even at the Ross Sea) subsequently moving westward across 120–220 degrees of longitude toward the Weddell Sea region. They departed from here in mid‐March on a fast spring migration up the Atlantic Ocean. The geolocator data revealed unexpected segregation in time and space between tern populations in the same flyway. Terns from the Baltic and Netherlands traveled earlier and to significantly more easterly longitudes in the Indian Ocean and Antarctic zone than terns from Greenland. We suggest an adaptive explanation for this pattern. The global migration system of the arctic tern offers an extraordinary possibility to understand adaptive values and constraints in complex pelagic life cycles, as determined by environmental conditions (marine productivity, wind patterns, low‐pressure trajectories, pack‐ice distribution), inherent factors (flight performance, molt, flocking), and effects of predation/piracy and competition.  相似文献   

6.
This paper compares the migratory movements of Iberian and central European satellite‐tagged black storks Ciconia nigra moving to Africa across the Strait of Gibraltar. Results show that the populations differ in departure dates from breeding areas (central European birds start to move 15 d before Iberian birds), cross the Strait of Gibraltar together and reach the Sahel on similar dates. This synchronic arrival to the Sahel may be related with the onset of suitable conditions for the species after summer rains, when many pools are available for fishing. In this area, Iberian birds occupied westernmost localities compared to central European birds crossing the Strait of Gibraltar, which were distributed closer to those storks arriving in Africa across the Bosporus. This suggests that the parallel distribution of breeding and wintering areas results from posterior rearrangements of the two populations crossing Gibraltar. These patterns appear to be linked to the increasing population of central European black storks located on the western side of the migratory divide that moves throughout the western flyway to sectors of the Sahel close to their ancestral wintering grounds.  相似文献   

7.
The migrations and winter distributions of most seabirds, particularly small pelagic species, remain poorly understood despite their potential as indicators of marine ecosystem health. Here we report the use of miniature archival light loggers (geolocators) to track the annual migration of Sabine’s Gull Larus sabini, a small (c. 200 g) Arctic‐breeding larid. We describe their migratory routes and identify previously unknown staging sites in the Atlantic Ocean, as well as their main Atlantic wintering area in the southern hemisphere. Sabine’s Gulls breeding in northeast Greenland displayed an average annual migration of almost 32 000 km (n = 6), with the longest return journey spanning close to 39 000 km (not including local movements at staging sites or within the wintering area). On their southern migration, they spent an average of 45 days in the Bay of Biscay and Iberian Sea, off the coasts of France, Spain and Portugal. They all wintered in close association with the cold waters of the Benguela Upwelling, spending an average of 152 days in that area. On their return north, Sabine’s Gulls staged off the west African coast (Morocco, Mauritania, Senegal), spending on average 19 days at this site. This leg of migration was particularly rapid, birds travelling an average of 813 km/day, assisted by the prevailing winds. Sabine’s Gulls generally followed a similar path on their outbound and return migrations, and did not exhibit the broad figure‐of‐eight pattern (anti clockwise in the southern hemisphere and clockwise in the northern hemisphere) seen in other trans‐equatorial seabirds in the Atlantic and Pacific oceans.  相似文献   

8.
The ivory gull Pagophila eburnea is an Arctic seabird species whose distribution is tightly coupled to the availability of sea ice. During the last decades, strong declines have been reported for breeding colonies in Canada and Greenland, which are usually located on nunataks or remote coastal islands. Here, we report the observation of a colony of ivory gulls breeding on a gravel-covered iceberg 70 km off Northeast Greenland in August 2014. It concerned approximately 60 adults, including two ringed individuals, and many chicks. This represents an unusual breeding site for the species, to be compared with a few cases of colonies on gravel-covered sea ice. Breeding on an offshore iceberg may be advantageous since it provides ultimate protection from predators. Furthermore, the proximity to the productive North East Water polynya may have been attractive to these gulls. As a consequence of this and previous observations, colony surveys should not solely focus on inland and coastal breeding habitats, but should be extended towards the ocean.  相似文献   

9.
Migrating birds make the longest non‐stop endurance flights in the animal kingdom. Satellite technology is now providing direct evidence on the lengths and durations of these flights and associated staging episodes for individual birds. Using this technology, we compared the migration performance of two subspecies of bar‐tailed godwit Limosa lapponica travelling between non‐breeding grounds in New Zealand (subspecies baueri) and northwest Australia (subspecies menzbieri) and breeding grounds in Alaska and eastern Russia, respectively. Individuals of both subspecies made long, usually non‐stop, flights from non‐breeding grounds to coastal staging grounds in the Yellow Sea region of East Asia (average 10 060 ± SD 290 km for baueri and 5860 ± 240 km for menzbieri). After an average stay of 41.2 ± 4.8 d, baueri flew over the North Pacific Ocean before heading northeast to the Alaskan breeding grounds (6770 ± 800 km). Menzbieri staged for 38.4 ± 2.5 d, and flew over land and sea northeast to high arctic Russia (4170 ± 370 km). The post‐breeding journey for baueri involved several weeks of staging in southwest Alaska followed by non‐stop flights across the Pacific Ocean to New Zealand (11 690 km in a complete track) or stopovers on islands in the southwestern Pacific en route to New Zealand and eastern Australia. By contrast, menzbieri returned to Australia via stopovers in the New Siberian Islands, Russia, and back at the Yellow Sea; birds travelled on average 4510 ± 360 km from Russia to the Yellow Sea, staged there for 40.8 ± 5.6 d, and then flew another 5680–7180 km to Australia (10 820 ± 300 km in total). Overall, the entire migration of the single baueri godwit with a fully completed return track totalled 29 280 km and involved 20 d of major migratory flight over a round‐trip journey of 174 d. The entire migrations of menzbieri averaged 21 940 ± 570 km, including 14 d of major migratory flights out of 154 d total. Godwits of both populations exhibit extreme flight performance, and baueri makes the longest (southbound) and second‐longest (northbound) non‐stop migratory flights documented for any bird. Both subspecies essentially make single stops when moving between non‐breeding and breeding sites in opposite hemispheres. This reinforces the critical importance of the intertidal habitats used by fuelling godwits in Australasia, the Yellow Sea, and Alaska.  相似文献   

10.
Phylogenomic analysis of highly-resolved intraspecific phylogenies obtained from complete mitochondrial DNA genomes has had great success in clarifying relationships within and among human populations, but has found limited application in other wild species. Analytical challenges include assessment of random versus non-random phylogeographic distributions, and quantification of differences in tree topologies among populations. Harp Seals (Pagophilus groenlandicus Erxleben, 1777) have a biogeographic distribution based on four discrete trans-Atlantic breeding and whelping populations located on “fast ice” attached to land in the White Sea, Greenland Sea, the Labrador ice Front, and Southern Gulf of St Lawrence. This East to West distribution provides a set of a priori phylogeographic hypotheses. Outstanding biogeographic questions include the degree of genetic distinctiveness among these populations, in particular between the Greenland Sea and White Sea grounds. We obtained complete coding-region DNA sequences (15,825 bp) for 53 seals. Each seal has a unique mtDNA genome sequence, which differ by 6 ~ 107 substitutions. Six major clades / groups are detectable by parsimony, neighbor-joining, and Bayesian methods, all of which are found in breeding populations on either side of the Atlantic. The species coalescent is at 180 KYA; the most recent clade, which accounts for 66% of the diversity, reflects an expansion during the mid-Wisconsinan glaciation 40 ~ 60 KYA. FST is significant only between the White Sea and Greenland Sea or Ice Front populations. Hierarchal AMOVA of 2-, 3-, or 4-island models identifies small but significant ΦSC among populations within groups, but not among groups. A novel Monte-Carlo simulation indicates that the observed distribution of individuals within breeding populations over the phylogenetic tree requires significantly fewer dispersal events than random expectation, consistent with island or a priori East to West 2- or 3-stepping-stone biogeographic models, but not a simple 1-step trans-Atlantic model. Plots of the cumulative pairwise sequence difference curves among seals in each of the four populations provide continuous proxies for phylogenetic diversification within each. Non-parametric Kolmogorov-Smirnov (K-S) tests of maximum pairwise differences between these curves indicates that the Greenland Sea population has a markedly younger phylogenetic structure than either the White Sea population or the two Northwest Atlantic populations, which are of intermediate age and homogeneous structure. The Monte Carlo and K-S assessments provide sensitive quantitative tests of within-species mitogenomic phylogeography. This is the first study to indicate that the White Sea and Greenland Sea populations have different population genetic histories. The analysis supports the hypothesis that Harp Seals comprises three genetically distinguishable breeding populations, in the White Sea, Greenland Sea, and Northwest Atlantic. Implications for an ice-dependent species during ongoing climate change are discussed.  相似文献   

11.
Identifying an organism's migratory strategies and routes has important implications for conservation. For most species of European ducks, information on the general course of migration, revealed by ringing recoveries, is available, whereas tracking data on migratory movements are limited to the largest species. In the present paper, we report the results of a tracking study on 29 Eurasian Teals, the smallest European duck, captured during the wintering period at three Italian sites. The departure date of spring migration was determined for 21 individuals, and for 15 the entire spring migratory route was reconstructed. Most ducks departed from wintering grounds between mid‐February and March following straight and direct routes along the Black Sea‐Mediterranean flyway. The breeding sites, usually reached by May, were spread from central to north‐Eastern Europe to east of the Urals. The migratory speed was slow (approximately 36 km/day on average) because most birds stopped for several weeks at stopover sites, mainly in south‐eastern Europe, especially at the very beginning of migration. The active flight migration segments were covered at much higher speeds, up to 872 km/day. Stopover duration tended to be shorter when birds were closer to their breeding site. These results, based on the largest satellite tracking effort for this species, revealed for the first time the main features of the migratory strategies of individual Teals wintering in Europe, such as the migration timing and speed and stopover localization and duration.  相似文献   

12.
The ivory gull, a rare high-Arctic species whose main habitat throughout the year is sea ice, is currently listed in Greenland as ‘Vulnerable’, and as ‘Endangered’ in Canada, where the population declined by 80% in 20 years. Despite this great concern, the status of the species in Greenland has been largely unknown as it breeds in remote areas and in colonies for which population data has rarely, if at all, been collected. Combining bibliographical research, land surveys, aerial surveys and satellite tracking, we were able to identify 35 breeding sites, including 20 new ones, in North and East Greenland. Most colonies are found in North Greenland and the largest are located on islands and lowlands. The current best estimate for the size of the Greenland population is approx. 1,800 breeding birds, but the real figure is probably >4,000 adult birds (i.e. >2,000 pairs) since all colonies have not yet been discovered and since only 50% or less of the breeding birds are usually present in the colonies at the time the censuses take place. Although this estimate is four to eight times higher than that previously arrived at, the species seems to be declining in the south of its Greenland breeding range, while in North Greenland the trends are unclear and unpredictable, calling for increased monitoring efforts.  相似文献   

13.
Understanding non‐breeding season movements and identifying wintering areas of different populations of migratory birds is important for establishing patterns of migratory connectivity over the annual cycle. We analyzed archival solar geolocation (N = 5) and global positioning data (= 1) to investigate migration routes, stopover sites, and wintering areas of a western‐most breeding population of Veeries (Catharus fuscescens) in the Pemberton Valley, British Columbia, Canada. Geolocation data were analyzed using a Bayesian state‐space model to improve likely position estimates. We compared our results with those from a Veery population located ~250 km east across a mountain chain in the Okanagan Valley, British Columbia, and with an eastern population in Delaware, U.S.A. Migrating Veeries from the Pemberton Valley used an eastern trajectory through the Rocky Mountains to the Great Plains to join a central flyway during fall and spring migration, a route similar to that used by Veeries breeding in the Okanagan Valley. However, wintering destinations of Pemberton Valley birds were more varied, with inter‐individual wintering distances ~1000 km greater than birds from the Okanagan Valley population and ~500 km from the previously known winter range of Veeries. The observed eastern migration path likely follows an ancestral route that evolved following the most recent glacial retreat. Consistent with patterns observed from the Okanagan and Delaware populations, Veeries from the Pemberton Valley undertook an intra‐tropical migration on the wintering grounds, but this winter movement differed from those of previously studied populations. Such winter movements may thus be idiosyncratic or show coarse population associations. Intra‐wintering‐ground movements likely occur either in response to seasonal changes in habitat suitability or as a means of optimizing pre‐migratory fueling prior to long‐distance spring movements to North America.  相似文献   

14.
One model for marine migration of Atlantic salmon Salmo salar proposes that North American and southern European stocks (<62° N) move directly to feeding grounds off west Greenland, then overwinter in the Labrador Sea, whereas northern European stocks (>62° N) utilize the Norwegian Sea. An alternate model proposes that both North American and European stocks migrate in the North Atlantic Subpolar Gyre (NASpG) where S. salar enter the NASpG on their respective sides of the Atlantic, and travel counterclockwise within the NASpG until returning to natal rivers. A review of data accumulated during the last 50 years suggests a gyre model is most probable. Freshwater parr metamorphose into smolts which have morphological, physiological and behavioural adaptations of epipelagic, marine fishes. Former high‐seas fisheries were seasonally sequential and moved in the direction of NASpG currents, and catches were highest along the main axis of the NASpG. Marking and discrimination studies indicate mixed continental origin feeding aggregations on both sides of the Atlantic. Marked North American smolts were captured off Norway, the Faroe Islands, east and west Greenland, and adults tagged at the Faroes were recovered in Canadian rivers. Marked European smolts were recovered off Newfoundland and Labrador, west and east Greenland, and adults tagged in the Labrador Sea were captured in European rivers. High Caesium‐137 (137Cs) levels in S. salar returning to a Quebec river suggested 62·3% had fed at or east of Iceland, whereas levels in 1 sea‐winter (SW) Atlantic Canada returnees indicated 24·7% had fed east of the Faroes. Lower levels of 137 Cs in returning 1SW Irish fish suggest much of their growth occurred in the western Atlantic. These data suggest marine migration of S. salar follows a gyre model and is similar to other open‐ocean migrations of epipelagic fishes.  相似文献   

15.
The population decline of the Lesser Kestrel Falco naumanni has been the subject of studies across its Western Palaearctic breeding range, but little is known about its use of pre‐migratory areas or African wintering quarters. We used geolocators to describe the temporal and spatial patterns of Portuguese Lesser Kestrel migration and wintering behaviour. Data on the complete migration were obtained from four individuals and another three provided further information. Prior to southward migration, Lesser Kestrels showed two different behaviours: northward‐orientated movements to Spain and movements in the proximity of the breeding area. Autumn migration took place mostly in late September; spring departures occurred mainly in the first half of February. Wintering grounds included Senegal, Mauritania and Mali, with individuals overlapping considerably in Senegal. Movements registered within the wintering grounds suggest itinerant behaviour in relation to local flushes of prey. During spring migration, birds crossed the Sahara Desert through Mauritania, Western Sahara and Morocco before passing over the Mediterranean to reach Portugal. Autumn migration lasted 4.8 ± 1.1 days, and spring migration lasted 4.1 ± 0.3 days. The mean daily flight range varied between approximately 300 and 850 km for an entire journey of around 2500 km. Effective protection of roosting sites in both pre‐migratory and wintering areas and maintaining grasshopper populations in Sahelian wintering quarters appear crucial in preserving this threatened migratory raptor across its African–Eurasian flyway. There was no evidence of any deleterious effects of fitting birds with loggers.  相似文献   

16.
We searched for a major stopover site of Bewick's Swans Cygnus columbianus bewickii in the White Sea following the suggestion that one should exist on the stretch between Estonia and the breeding grounds (1750 km). We discovered 733 Swans in Dvina Bay during a late aerial survey in spring 1993. Subsequently, ground-based research was carried out in May 1994, 1995 and 1996 in the Dry Sea, a tidal, shallow bay with fresh to brackish water just north of the Dvina Delta. The total number of passing Bewick's Swans was estimated at 10974 (1994), 9593 (1995) and 17 972 (1996) (32–60% of the flyway population). Estimated peak numbers staging were 1500–2000 (9 May 1994), 4937 (17 May 1995) and 4457 (24 May 1996) (> 5–16% of the flyway population). The Swans foraged almost exclusively on submerged water plants apart from some supplemental feeding on emerged food plants around high tide. Stoneworts Chara spp. were an important food in the late spring of 1996, because they grew in places where bog streams quickly melted the ice. At this latitude (65̀N) food alternatives to the submerged macrophytes are rare in spring, but we cannot rule out the possibility that the Swans forage on grass rhizomes on inundated pastures. One bird tracked by satellite staged 15 days in Dvina Bay, of which four days were spent in the Dry Sea, in accordance with other indications that the Dry Sea is part of a larger stopover site within Dvina Bay. Recent evidence shows that the Swans largely skip the White Sea during autumn migration. However, in spring the birds probably need this stopover to be able to carry reserves to the breeding grounds. At present, the preservation of the submerged vegetation in Dvina Bay seems to be crucial to the conservation of this Bewick's Swan population.  相似文献   

17.
KURT K. BURNHAM  IAN NEWTON 《Ibis》2011,153(3):468-484
Little information exists on the movements of Gyrfalcons Falco rusticolus outside the breeding season, particularly amongst High Arctic populations, with almost all current knowledge based on Low Arctic populations. This study is the first to provide data on summer and winter ranges and migration distances. We highlight a behaviour previously unknown in Gyrfalcons, in which birds winter on sea ice far from land. During 2000–2004, data were collected from 48 Gyrfalcons tagged with satellite transmitters in three parts of Greenland: Thule (northwest), Kangerlussuaq (central‐west) and Scoresbysund (central‐east). Breeding home‐range size for seven adult females varied from 140 to 1197 km2 and was 489 and 503 km2 for two adult males. Complete outward migrations from breeding to wintering areas were recorded for three individuals: an adult male which travelled 3137 km over a 38‐day period (83 km/day) from northern Ellesmere Island to southern Greenland, an adult female which travelled 4234 km from Thule to southern Greenland (via eastern Canada) over an 83‐day period (51 km/day), and an adult female which travelled 391 km from Kangerlussuaq to southern Greenland over a 13‐day period (30 km/day). Significant differences were found in winter home‐range size between Falcons tagged on the west coast (383–6657 km2) and east coast (26 810–63 647 km2). Several Falcons had no obvious winter home‐ranges and travelled continually during the non‐breeding period, at times spending up to 40 consecutive days at sea, presumably resting on icebergs and feeding on seabirds. During the winter, one juvenile female travelled over 4548 km over an approximately 200‐day period, spending over half that time over the ocean between Greenland and Iceland. These are some of the largest winter home‐ranges ever documented in raptors and provide the first documentation of the long‐term use of pelagic habitats by any falcon. In general, return migrations were faster than outward ones. This study highlights the importance of sea ice and fjord regions in southwest Greenland as winter habitat for Gyrfalcons, and provides the first detailed insights into the complex and highly variable movement patterns of the species.  相似文献   

18.
Evidence‐based protection of migratory birds at flyway levels requires a solid understanding of their use of ‘stopping sites’ during migration. To characterize the site use of northward‐migration great knots Calidris tenuirostris in China, we compared length of stay and fuel deposition during northward migration at areas in the south and the north of the Yellow Sea, a region critical for migrating shorebirds. Radio‐tracking showed that at the southern site great knots stayed for only short periods (2.3 ± 1.9 d, n = 40), and bird captures showed that they did not increase their mean body mass while there. In the north birds stayed for 1 month (31.0 ± 13.6 d, n = 22) and almost doubled their mean body mass. Fuel consumption models suggest that great knots departing from the northern Yellow Sea should be able to fly nonstop to the breeding grounds, whereas those from the south would require a refueling stop further north. These results indicate that the study sites in the northern and southern Yellow Sea serve different roles: the southern site acts as a temporary stopover area that enables birds with low fuel stores to make it to main staging areas further north, while the northern site serves as the critical staging site where birds refuel for the next leg of their migration. The rapid turnover rate in the southern Yellow Sea indicates that many more birds use that area than are indicated by peak counts. Differential use of the southern and northern sites indicates that both play crucial roles in the ability of great knots to migrate successfully.  相似文献   

19.
This is the first study to perform a comparative genetic analysis of Greenland halibut in the samples from the Atlantic (waters of west and east of Greenland), Arctic (Laptev Sea), and Pacific (the western part of the Bering Sea) ocean basins using seven microsatellite loci. The obtained data clearly demonstrate that the Greenland halibut population in the Laptev Sea belongs to the groups of the Atlantic Ocean basin. Apparently, the Greenland halibut of the Laptev Sea is represented by a dependent population, which is replenished due to the drift of immatures from the spawning grounds in the Barents Sea with the transformed Atlantic water flow along the continental slope. In addition, the Arctic population can be partially replenished due to the breeding of the halibut in local spawning grounds.  相似文献   

20.
Canada’s eastern Arctic (Nunavut and Arctic Quebec—Nunavik, N of 60°) supports large numbers of seabirds in summer. Seabird breeding habitat in this region includes steep, rocky coasts and low-lying coasts backed by lowland sedge-meadow tundra. The former areas support colonial cliff- and scree-nesting seabirds, such as murres and fulmars; the latter inland or coastal seabirds, such as terns, gulls and jaegers. The region supports some 4 million breeding seabirds, of which the most numerous are thick-billed murres (Uria lomvia; 75%), black guillemots (Cepphus grylle; 9%), northern fulmars (Fulmarus glacialis; 8%) and black-legged kittiwakes (Rissa tridactyla; 6%). The majority of Arctic seabirds breed in a small number of very large colonies (>10,000 birds), but there are also substantial numbers of non-colonial or small-colony breeding populations that are scattered more widely (e.g. terns, guillemots). Population trends among Canadian Arctic seabirds over the past few decades have been variable, with no strongly negative trends except for the rare ivory gull (Pagophila eburnea): this contrasts with nearby Greenland, where several species have shown steep declines. Although current seabird trends raise only small cause for concern, climate amelioration may enable increased development activities in the north, potentially posing threats to some seabirds on their breeding grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号