首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For migratory species, the success of population reintroduction or reinforcement through captive‐bred released individuals depends on survivors undertaking appropriate migrations. We assess whether captive‐bred Asian Houbara Chlamydotis macqueenii from a breeding programme established with locally sourced individuals and released into suitable habitat during spring or summer undertake similar migrations to those of wild birds. Using satellite telemetry, we compare the migrations of 29 captive‐bred juveniles, 10 wild juveniles and 39 wild adults (including three birds first tracked as juveniles), examining migratory propensity (proportion migrating), timing, direction, stopover duration and frequency, efficiency (route deviation), and wintering and breeding season locations. Captive‐bred birds initiated autumn migration an average of 20.6 (±4.6 se) days later and wintered 470.8 km (±76.4) closer to the breeding grounds, mainly in Turkmenistan, northern Iran and Afghanistan, than wild birds, which migrated 1217.8 km (±76.4), predominantly wintering in southern Iran and Pakistan (juveniles and adults were similar). Wintering locations of four surviving captive‐bred birds were similar in subsequent years (median distance to first wintering site = 70.8 km, range 6.56–221.6 km), suggesting that individual captive‐bred birds (but not necessarily their progeny) remain faithful to their first wintering latitude. The migratory performance of captive‐bred birds was otherwise similar to that of wild juveniles. Although the long‐term fitness consequences for captive‐bred birds establishing wintering sites at the northern edge of those occupied by wild birds remain to be quantified, it is clear that the pattern of wild migrations established by long‐term selection is not replicated. If the shorter migration distance of young captive‐bred birds has a physiological rather than a genetic basis, then their progeny may still exhibit wild‐type migration. However, as there is a considerable genetic component to migration, captive breeding management must respect migratory population structure as well as natal and release‐site fidelity.  相似文献   

2.
KURT K. BURNHAM  IAN NEWTON 《Ibis》2011,153(3):468-484
Little information exists on the movements of Gyrfalcons Falco rusticolus outside the breeding season, particularly amongst High Arctic populations, with almost all current knowledge based on Low Arctic populations. This study is the first to provide data on summer and winter ranges and migration distances. We highlight a behaviour previously unknown in Gyrfalcons, in which birds winter on sea ice far from land. During 2000–2004, data were collected from 48 Gyrfalcons tagged with satellite transmitters in three parts of Greenland: Thule (northwest), Kangerlussuaq (central‐west) and Scoresbysund (central‐east). Breeding home‐range size for seven adult females varied from 140 to 1197 km2 and was 489 and 503 km2 for two adult males. Complete outward migrations from breeding to wintering areas were recorded for three individuals: an adult male which travelled 3137 km over a 38‐day period (83 km/day) from northern Ellesmere Island to southern Greenland, an adult female which travelled 4234 km from Thule to southern Greenland (via eastern Canada) over an 83‐day period (51 km/day), and an adult female which travelled 391 km from Kangerlussuaq to southern Greenland over a 13‐day period (30 km/day). Significant differences were found in winter home‐range size between Falcons tagged on the west coast (383–6657 km2) and east coast (26 810–63 647 km2). Several Falcons had no obvious winter home‐ranges and travelled continually during the non‐breeding period, at times spending up to 40 consecutive days at sea, presumably resting on icebergs and feeding on seabirds. During the winter, one juvenile female travelled over 4548 km over an approximately 200‐day period, spending over half that time over the ocean between Greenland and Iceland. These are some of the largest winter home‐ranges ever documented in raptors and provide the first documentation of the long‐term use of pelagic habitats by any falcon. In general, return migrations were faster than outward ones. This study highlights the importance of sea ice and fjord regions in southwest Greenland as winter habitat for Gyrfalcons, and provides the first detailed insights into the complex and highly variable movement patterns of the species.  相似文献   

3.
Ross's Gull Rhodostethia rosea is one of the world's least known seabirds; < 1% of the estimated global population can be accounted for at known breeding sites, and its wintering range has never been determined. Anecdotal reports over the last two centuries have prompted extensive speculation as to possible wintering areas used by this species in the north Pacific/Bering Sea region, but none has ever been confirmed. Using satellite and geolocator telemetry, we show that some Ross's Gulls from a colony in the Canadian Arctic winter in a restricted area of the northern Labrador Sea. Our discovery of a wintering area in the northwest Atlantic indicates that Ross's Gulls breeding in the Nearctic may be part of a disjunct population, or that birds breeding in the Palaearctic may winter off the east coast of North America.  相似文献   

4.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

5.
Accumulating evidence suggests that Atlantic populations of Leach's Storm‐Petrels (Oceanodroma leucorhoa) are experiencing significant declines. To better understand possible causes of these declines, we used geolocators to document movements of these small (~50‐g) pelagic seabirds during migration and the non‐breeding period. During 2012 and 2013, movement tracks were obtained from two birds that traveled in a clock‐wise direction from two breeding colonies in eastern Canada (Bon Portage Island, Nova Scotia, and Gull Island, Newfoundland) to winter in tropical waters. The bird from Bon Portage Island started its migration towards Cape Verde in October, arrived at its wintering area off the coast of eastern Brazil in January, and started migration back to Nova Scotia in April. The bird from Gull Island staged off Newfoundland in November and then again off Cape Verde in January before its geolocator stopped working. Movements of Leach's Storm‐Petrels in our study and those of several other procellariiforms during the non‐breeding period are likely facilitated by the prevailing easterly trade winds and the Antilles and Gulf Stream currents. Although staging and wintering areas used by Leach's Storm‐Petrels in our study were characterized by low productivity, the West Africa and northeastern Brazilian waters are actively used by fisheries and discards can attract Leach's Storm‐Petrels. Our results provide an initial step towards understanding movements of Leach's Storm‐Petrels during the non‐breeding period, but further tracking is required to confirm generality of their migratory routes, staging areas, and wintering ranges.  相似文献   

6.
ABSTRACT Factors affecting winter survival may be key determinants of status and population trends of seabirds, but connections between breeding sites and wintering areas of most populations are poorly known. Pelagic Cormorants (Phalacrocorax pelagicus; N= 6) surgically implanted with satellite transmitters migrated from a breeding colony on Middleton Island, northern Gulf of Alaska, to wintering sites in southeast Alaska and northern British Columbia. Winter locations averaged 920 km (range = 600–1190 km) from the breeding site. Migration flights in fall and spring lasted ≤5 d in four instances. After reaching wintering areas, cormorants settled in narrowly circumscribed inshore locations (~10‐km radius) and remained there throughout the nonbreeding period (September– March). Two juveniles tagged at the breeding colony as fledglings remained at their wintering sites for the duration of the tracking interval (14 and 22 mo, respectively). Most cormorants used multiple sites within their winter ranges for roosting and foraging. Band recoveries show that Pelagic Cormorants in southern British Columbia and Washington disperse locally in winter, rather than migrating like the cormorants in our study. Radio‐tagging and monitoring cormorants and other seabirds from known breeding sites are vital for understanding migratory connectivity and improving conservation strategies for local populations.  相似文献   

7.
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society.  相似文献   

8.
ABSTRACT Although within‐year site fidelity to specific wintering sites allows shorebirds to use prior knowledge of resources and microhabitats, such fidelity may also make populations more vulnerable to extirpation in the event of increased predation pressure, habitat loss, or disturbance. In the eastern Atlantic, Purple Sandpipers (Calidris maritima) have been found to be highly faithful to specific sites in wintering areas. However, little is known about the use of wintering areas by these sandpipers along the coast of Maine. We quantified movements of 60 radio‐marked Purple Sandpipers in a bay near the mainland and on an offshore cluster of islands along the mid‐coast of Maine during two winters (2005–2006 and 2006–2007). Birds marked in early‐ and mid‐December remained until spring migration, with no evidence of onward migration. Mean maximum distances moved did not differ significantly between either males (8.6 ± 1.0 [SE] km; N= 30) and females (7.4 ± 0.8 km; N= 30) or juveniles (9.9 ± 1.6 km; N= 9) and adults (7.8 ± 1.1 km; N= 26). We also detected no monthly (January–May) differences in maximum distances moved. Sixty percent of marked individuals moved ≤5 km between the two most distant relocations and no birds moved >25 km during the 2‐ to 4‐month tracking period. We attribute the high site fidelity primarily to the plentiful prey base in the study area. During a 2‐d period with severe cold, feeding areas at locations protected from wave action became encased in ice and birds at these locations moved up to 10 km offshore to sites with less ice. Species with strong site fidelity, like wintering Purple Sandpipers, may be at higher risk in the event of large‐scale changes in their food base, increased predation pressure, habitat loss, or disturbance. However, the short‐distance movements made when intertidal feeding areas became encased in ice suggest that Purple Sandpipers could potentially move greater distances in response to changing conditions in their wintering areas.  相似文献   

9.
Migratory birds are often faithful to wintering (nonbreeding) sites, and also migration timing is usually remarkably consistent, that is, highly repeatable. Spatiotemporal repeatability can be of advantage for multiple reasons, including familiarity with local resources and predators as well as avoiding the costs of finding a new place, for example, nesting grounds. However, when the environment is variable in space and time, variable site selection and timing might be more rewarding. To date, studies on spatial and temporal repeatability in short‐lived long‐distance migrants are scarce, most notably of first‐time and subsequent migrations. Here, we investigated repeatability in autumn migration directions, wintering sites, and annual migration timing in Hoopoes (Upupa epops), a long‐distance migrant, using repeated tracks of adult and first‐time migrants. Even though autumn migration directions were mostly the same, individual wintering sites often changed from year to year with distances between wintering sites exceeding 1,000 km. The timing of migration was repeatable within an individual during autumn, but not during spring migration. We suggest that Hoopoes respond to variable environmental conditions such as north–south shifts in rainfall during winter and differing onset of the food availability during spring migration.  相似文献   

10.
Ecological barriers such as oceans, mountain ranges or glaciers can have a substantial influence on the evolution of animal migration. Along the migration flyway connecting breeding sites in the North American Arctic and wintering grounds in Europe or Africa, nearctic species are confronted with significant barriers such as the Atlantic Ocean and the Greenland icecap. Using geolocation devices, we identified wintering areas used by ringed plovers nesting in the Canadian High‐Arctic and investigated migration strategies used by these nearctic migrants along the transatlantic route. The main wintering area of the ringed plovers (n = 20) was located in western Africa. We found contrasting seasonal migration patterns, with ringed plovers minimizing continuous flight distances over the ocean in spring by making a detour to stop in Iceland. In autumn, however, most individuals crossed the ocean in one direct flight from southern Greenland to western Europe, as far as southern Spain. This likely resulted from prevailing anti‐clockwise winds associated with the Icelandic low‐pressure system. Moreover, the plovers we tracked largely circumvented the Greenland icecap in autumn, but in spring, some plovers apparently crossed the icecap above the 65°N. Our study highlighted the importance of Iceland as a stepping‐stone during the spring migration and showed that small nearctic migrants can perform non‐stop transatlantic flights from Greenland to southern Europe.  相似文献   

11.
Across their broad North American distribution, Hermit Thrushes (Catharus guttatus) exhibit extensive yet subtle intraspecific variation in morphology and diverse migration patterns, causing considerable debate regarding their systematics and an incomplete understanding of their migratory geography. To better understand the fall migration and wintering destinations of Hermit Thrushes in coastal California, we deployed geolocators on individuals of the subspecies C. g. slevini breeding in the Santa Cruz Mountains of the Coast Ranges. In 2014, we captured 20 Hermit Thrushes in Big Basin Redwoods State Park using mist‐nets and attached geolocators. In 2015, we retrieved tags from 13 birds. Tagged Hermit Thrushes left the breeding area between 1 and 19 September 2014 and arrived in wintering areas in Baja California Sur and northwestern mainland Mexico between 24 September and 13 October 2014. The average distance between breeding and wintering areas was 1617 ± 217 (SD) km, and the average duration of fall migration was 22.5 ± 6.4 (SD) days. Our results suggest that Hermit Thrushes breeding in Big Basin winter in a highly concentrated region of western Mexico including Baja California Sur and southwestern Sonora or northwestern‐most Sinaloa; we found no evidence that Big Basin birds overwintered in the southwestern United States. Our results also confirm the existence of chain migration for Hermit Thrushes in California. Because C. g. slevini exhibits a limited distribution in both breeding and wintering areas and their morphology and song suggest adaptation to their habitat, we recommend exploration of fine‐scale genetic structure of coastal California’s Hermit Thrushes to determine the extent of evolutionary divergence in this subspecies.  相似文献   

12.
This study was designed to determine the spring, summer, autumn, and early winter distribution, migration routes, and timing of migration of the Atlantic population of Steller's eiders Polysticta stelleri. Satellite transmitters were implanted in 20 eiders captured in April 2001 at Vadsø, Norway, and their locations were determined from 5 May 2001 to 6 February 2002. Regions where birds concentrated from spring until returning to wintering areas included coastal waters from western Finnmark, Norway, to the eastern Taymyr Peninsula, Russia. Novaya Zemlya, Russia, particularly the Mollera Bay region, was used extensively during spring staging, moult, and autumn staging; regions of the Kola, Kanin, and Gydanskiy peninsulas, Russia, were used extensively during spring and moult migrations. Steller's eiders migrated across the Barents and Kara seas and along the Kara Sea and Kola Peninsula coastal waters to nesting, moulting, and wintering areas. The majority of marked eiders (9 of 15) were flightless in near‐shore waters along the west side of Novaya Zemlya. Eiders were also flightless in northern Norway and along the Kanin and at Kola Peninsula coasts. We compare and contrast natural history characteristics of the Atlantic and Pacific populations and discuss evolutionary and ecological factors influencing their distribution.  相似文献   

13.
Migration strategies differ greatly among and within avian populations. The associated trade‐offs and fitness consequences of diverse strategies and how they persist are pertinent questions in migration research. Migration is a costly endeavour, presumably compensated for by better survival conditions in the non‐breeding area. One way to assess the cost of alternative strategies is to investigate the investment in movement across the entire annual cycle, an assessment made increasingly feasible with improvements in tracking technology. Our study focuses on lesser black‐backed gulls, generalist seabirds that exploit a broad range of resources, exhibit diverse migration strategies and have potentially altered migration strategies in response to human activities and climate change. We used GPS tracking to quantify lesser black‐backed gulls’ movement throughout their annual cycle and compare trade‐offs among four migration strategies. The annual cumulative distance travelled by long distance migrants wintering in west Africa, over 4000 km from their breeding colony, did not differ significantly from individuals of the same breeding colony wintering only a few hundred kilometres away in Great Britain. Short distance migrants returned to the colony first, and long distance migrants returned last. Sex and wing length were not correlated with maximum range, cumulative distance travelled or timing. Individuals spent only a small proportion of their time in flight and spent on average 17% of their time at sea throughout an annual cycle, suggesting a reliance on inland resources for many individuals. Analysing movement throughout the annual cycle can change our perspective and understanding of consequences of different migration strategies. Our study shows that a range of migration strategies coexists and we propose that the long term costs and benefits of these strategies balance out. Diversity in migration strategies may contribute to the resilience of this species in the face of ongoing anthropogenic impact on the environment.  相似文献   

14.
Long‐distance migratory flights with multiple stop‐overs, multiple wintering sites, and small‐scale connectivity in Afro‐Palearctic migrants are likely to increase their vulnerability to environmental change and lead to declining populations. Here we present the migration tracks and wintering locations of the first six Cyprus wheatears to be tracked with geolocators: a species with high survival and a stable population. We therefore predicted a non‐stop flight from Cyprus to sub‐Saharan wintering grounds, a single wintering area for each individual and a wide spread of wintering locations representing low migratory connectivity at the population level. The sub‐Saharan wintering grounds in south Sudan, Sudan and Ethiopia were likely reached by a single flight of an average straight‐line distance of 2538 km in ca 60 h, with an average minimum speed of 43.1 km h–1. The high speed of migration probably ruled out stop‐overs greater than a few hours. Cyprus wheatears migrated from Cyprus in mid‐late October and most probably remained at a single location throughout winter; three out of five birds with available data may have used a second site < 100 km away during February; all returned between 7–22 March when accurate geolocation data are not possible due to the equinox. Wintering locations were spread over at least 950 km. There were no tag effects on survival. Cyprus wheatears showed a migratory strategy in accordance with their observed high survival rate and demonstrated a routine flight range that allows much of the Mediterranean and the Sahara to be crossed in a rapid two and a half‐day flight.  相似文献   

15.
Pelagic seabirds breeding at high latitudes generally split their annual cycle between reproduction, migration, and wintering. During the breeding season, they are constrained in their foraging range due to reproduction while during winter months, and they often undertake long‐distance migrations. Black‐browed albatrosses (Thalassarche melanophris) nesting in the Falkland archipelago remain within 700 km from their breeding colonies all year‐round and can therefore be considered as resident. Accordingly, at‐sea activity patterns are expected to be adjusted to the absence of migration. Likewise, breeding performance is expected to affect foraging, flying, and floating activities, as failed individuals are relieved from reproduction earlier than successful ones. Using geolocators coupled with a saltwater immersion sensor, we detailed the spatial distribution and temporal dynamics of at‐sea activity budgets of successful and failed breeding black‐browed albatrosses nesting in New Island, Falklands archipelago, over the breeding and subsequent nonbreeding season. The 90% monthly kernel distribution of failed and successful breeders suggested no spatial segregation. Both groups followed the same dynamics of foraging effort both during daylight and darkness all year, except during chick‐rearing, when successful breeders foraged more intensively. Failed and successful breeders started decreasing flying activities during daylight at the same time, 2–3 weeks after hatching period, but failed breeders reached their maximum floating activity during late chick‐rearing, 2 months before successful breeders. Moon cycle had a significant effect on activity budgets during darkness, with individuals generally more active during full moon. Our results highlight that successful breeders buffer potential reproductive costs during the nonbreeding season, and this provides a better understanding of how individuals adjust their spatial distribution and activity budgets according to their breeding performance in absence of migration.  相似文献   

16.
The migration route of Red‐necked Phalarope populations breeding on North Atlantic islands has been subject to considerable speculation. Geolocator tags were fitted to nine Red‐necked Phalaropes breeding in northern Scotland to assess whether they migrated to Palaearctic or Nearctic wintering grounds. Of four birds known to return, two had retained their tags, of which one was recaptured. This male Phalarope left Shetland on 1 August 2012 and crossed the Atlantic Ocean to the Labrador Sea off eastern Canada in 6 days, then moved south to reach Florida during September, crossed the Gulf of Mexico into the Pacific Ocean and reached an area between the Galapagos Islands and the South American coast by mid‐October, where it remained until the end of April, returning by a similar route until the tag battery failed as the bird was crossing the Atlantic Ocean. The total migration of 22 000 km is approximately 60% longer than the previously assumed route to the western part of the Arabian Sea, and this first evidence of migration of a European breeding bird to the Pacific Ocean also helps to indicate the possible migratory route of the large autumn movements of Red‐necked Phalaropes down the east coast of North America.  相似文献   

17.
Five northern fulmars (Fulmarus glacialis) were tracked by satellite transmitters from their breeding colony in the Canadian high Arctic (Cape Vera, Devon Island, NT) to their wintering grounds in the northwest Atlantic Ocean. In both 2004 and 2005, fulmars left northern Baffin Bay in mid- to late September, and migrated south to Davis Strait in less than 1 week, after which movements were erratic. In October and November, the birds were widely distributed, but by December through March, they tended to remain in the Labrador Sea between 50 and 55°N. Average flight speed was 35 km/h with a maximum of 64 km/h, and over their entire transmission periods, the five traveled on average 84 km/day. Our work suggests that the North Atlantic northern fulmar population may be panmictic in winter, with the Labrador Sea as a key wintering site for fulmars from high Arctic Canada.  相似文献   

18.
We tracked eight adult northern lapwings Vanellus vanellus (six females and two males) from a Dutch breeding colony by light‐level geolocation year‐round, three of them for multiple years. We show that birds breeding virtually next to each other may choose widely separated wintering grounds, stretching from nearby the colony west towards the UK and Ireland, and southwest through France into Iberia and Morocco. However, individual lapwings appeared relatively faithful to a chosen wintering area, and timing of outward and homeward migration can be highly consistent between years. Movements of migratory individuals were usually direct and fast, with some birds covering distances of approximately 2000 km within 2 to 4 days of travel. The two males wintered closest and returned earliest to the breeding colony. The female lapwings returned well before the onset of breeding, spending a pre‐laying period of 19 to 54 days in the wider breeding area. Despite the potential for high migration speeds, the duration that birds were absent from the breeding area increased with distance to wintering areas, a pattern which was mainly driven by an earlier outward migration of birds heading for more distant wintering grounds. Moreover, females that overwintered closer to colony bred earlier. A large variation in migration strategies found even within a single breeding colony has likely supported the species’ responsiveness to recent climate change as evidenced by a shortened migration distance and an advanced timing of reproduction in Dutch lapwings since the middle of the 20th century.  相似文献   

19.
The migration sources and pathways of Sogatella furcifera (Horváth) in topologically complex regions like Yunnan, China, and adjacent montane areas have long been a challenging task and a bottleneck in effective pest forecast and control. The present research reinvestigated this issue using a combination of mtDNA and long‐term historical wind field data in an attempt to provide new insights. Genetic analyses showed that the 60 populations of S. furcufera collected across Myanmar, Thailand, Laos, Vietnam, Yunnan, Guizhou, and Sichuan lack genetic structure and geographic isolation, while spatial analysis of haplotype and diversity indices discovered geographic relevance between populations. Migration rate analysis combined with high‐resolution 10‐year wind field analysis detected the following migration sources, pathways, and impacted areas which could explain the outbreak pattern in Yunnan. (a) Dominating stepwise northward migrations originated from northern Indochina, southern Yunnan, and central‐eastern Yunnan, impacting their northern areas. (b) Concurring summer–autumn southward (return) migration originated from nearly all latitude belts of Sichuan and Yunnan mainly impacting central and southern Yunnan. (c) Regular eastward and summer–autumn westward migrations across Yunnan. The northward migration reflects the temporal rhythm of gradual outbreaks from the south to the north in a year, while the return migration may explain the repeated or very severe outbreaks in the impacted areas. To form a better pest forecast and control network, attention must also be paid to the northern part of Yunnan to suppress the impact of return migration in summers and autumns.  相似文献   

20.
Determining patterns in annual movements of animals is an important component of population ecology, particularly for migratory birds where migration timing and routes, and wintering habitats have key bearing on population dynamics. From 2009 to 2011, we used light‐level geolocators to document the migratory movements of Flammulated Owls (Psiloscops flammeolus). Four males departed from breeding areas in Colorado for fall migration between ≤5 and 21 October, arrived in wintering areas in Mexico between 11 October and 3 November, departed from wintering areas from ≤6 to 21 April, and returned to Colorado between 15 and 21 May. Core wintering areas for three males were located in the Trans‐Mexican Volcanic Belt Mountains in the states of Jalisco, Michoacán, and Puebla in central and east‐central Mexico, and the core area for the other male was in the Sierra Madre Oriental Mountains in Tamaulipas. The mean distance from breeding to wintering centroids was 2057 ± 128 km (SE). During fall migration, two males took a southeastern path to eastern Mexico, and two males took a path due south to central Mexico. In contrast, during spring migration, all four males traveled north from Mexico along the Sierra Madre Oriental Mountains to the Rio Grande Valley and north through New Mexico. The first stopovers in fall and last stopovers in spring were the longest in duration for all males and located 300–400 km from breeding areas. Final spring stopovers may have allowed male Flammulated Owls to fine tune the timing of their return to high‐elevation breeding areas where late snows are not uncommon. One male tracked in both years had similar migration routes, timing, and wintering areas each year. Core wintering and final stopover areas were located primarily in coniferous forests and woodlands, particularly pine‐oak forests, suggesting that these are important habitats for Flammulated Owls throughout their annual cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号