首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
花青素是一种广泛存在于植物中的水溶性色素,在植物抗逆和预防人类慢性疾病中起着重要作用。花青素生物合成过程在模式植物中的研究较为清晰,其过程主要受多种结构基因编码的酶类及转录调控因子(MYB、bHLH和WD40蛋白)控制。此外,LBD基因家族中的LBD37、LBD38和LBD39基因对花青素的生物合成起负调控作用,microRNA和环境因子对花青素的生物合成过程也起到了调控作用。同时,茉莉酸、赤霉素和脱落酸等植物激素也参与了花青素的生物合成调控过程。近年来,随着人们对植物花青素研究不断深入,越来越多的研究结果揭示花青素合成途径的分子调控机制在不同种植物中存在很大的差异性和复杂性。该文对植物花青素的合成途径、相关酶和各种调控因子进行了综述,并概述了植物花青素合成代谢中基因突变与花色变异的关系,旨在为今后深入研究花青素的分子调控机制,解析其遗传规律以及利用基因工程开展作物遗传改良等方面提供理论依据。  相似文献   

2.
花青素合成途径中分子调控机制的研究进展   总被引:1,自引:0,他引:1  
花青素是广泛存在于植物中的天然水溶性色素。植物不同物种中花青素生物合成代谢途径的遗传特性和调控机制决定了该物种的花色。目前花青素生物合成途径的研究已清晰透彻。花青素合成途径的调控主要发生在结构基因的转录水平上,受多种转录因子的调控。研究发现,对花青素代谢途径中结构基因起调控作用的重要转录因子,主要包括WD40重复蛋白、b HLH蛋白和R2R3-MYB蛋白,这些转录因子之间的结合及其相互作用决定结构基因的表达。本文着重介绍花青素生物合成途径的分子调控机制,即转录因子通过形成三聚体复合物,与结构基因的启动子结合来调控结构基因的表达,并概述其在花色改造基因工程及定向改变花青素含量中的应用。  相似文献   

3.
类黄酮-3'5'-羟化酶(F3'5'H)基因是合成蓝色飞燕草色素类花色苷的关键酶基因。本研究采用RT-PCR法从彩色马铃薯品种‘转心乌’中克隆到了F3'5'H基因的c DNA,并进行了生物信息学和组织表达模式分析,希望能探明F3'5'H基因在彩色马铃薯花色苷合成中的作用及表达方式。克隆到的F3'5'H c DNA序列全长1 720 bp,编码509个氨基酸残基,同源比对表明F3'5'H与茄科植物聚在一起,其次是其它双子叶植物。F3'5'H具有信号肽和明显的跨膜结构域,属于分泌蛋白且为稳定的亲水蛋白,定位于细胞质。说明F3'5'H在细胞质中的粗糙型内质网上合成前体后,跨膜运输到其它部位或细胞器中发挥作用。α螺旋和无规则卷曲是F3'5'H的主要二级结构元件。F3'5'H具有细胞色素P450的"PPGP"、"AGTDT"、"FGAGRRICAG"三段基序,且只有一个功能结构域,与细胞色素P450的功能结构域相匹配,属于细胞色素P450家族的一员。组织特异性表达结果表明:F3'5'H相对表达量和花色苷含量均是块茎高于叶片和地上茎,它们的变化趋势基本一致,花色苷含量较高的器官,其F3'5'H的相对表达量也高,说明花色苷的积累与F3'5'H的表达正相关。  相似文献   

4.
果实花青素生物合成分子机制研究进展   总被引:1,自引:0,他引:1  
花青素是一种天然的水溶性植物色素,与果实的品质性状密切相关,有益于人体健康。花青素的积累是编码花青素生物合成途径的结构基因协同表达的结果,而结构基因通常由MYB、bHLH和WD40这3类调节基因控制。现已从果实中分离了多种花青素合成的结构基因和调节基因。文章重点介绍了调节基因调控果实花青素生物合成的分子机制,指出在MYB、bHLH和WD40互作的调控网络方面的研究还有很多空白。最新的研究揭示了果实成熟过程中生物内在因素和外界环境通过调节基因影响果实花青素生物合成。上述研究为在分子水平上更好的探索果实花青素的生物合成具有重要意义。  相似文献   

5.
慕蓉蓉  牛晴晴  孙玉强  梅俊  苗蒙 《遗传》2022,(8):720-728
原花青素作为植物重要的次生代谢产物,是植物应对生物和非生物胁迫的一种重要防御手段,也是影响植物发育和品质的重要因素。原花青素作为花青素生物合成的一条末端通路在模式植物中已有研究,但是具体代谢和调控机制尚不明确;原花青素作为棕色棉纤维呈色的主要物质,其棉纤维呈色的生化与分子机制仍未完全阐明。本研究从陆地棉(Gossypium hirsutum)中克隆了一个MYB类转录因子基因GhTT2 (transparent testa 2),并对其基因结构、表达模式、亚细胞定位及功能进行了分析。结果表明:GhTT2转录因子具有典型的MYB结构域,在纤维中优势表达,其转录水平随花青素含量增加而降低;该基因可被原核诱导表达;与GFP融合的重组蛋白定位在细胞核;酵母转化结果表明GhTT2具有转录激活功能;在棉花中沉默GhTT2基因的表达,导致原花青素含量显著降低,表明其可能参与调控陆地棉原花青素的生物合成。本研究结果为深入阐明MYB类转录因子参与调控植物原花青素生物合成途径的分子机制提供参考。  相似文献   

6.
植物花青素代谢途径分析及调控模型建立   总被引:17,自引:1,他引:16  
介绍了植物花青素的合成、修饰、转运及汇集过程,从转录水平和转录后水平分析了花青素途径分子调控机制,概述了外部因素对花青素积累的影响,并在此基础上提出了一个新的花青素途径调控机制模型。  相似文献   

7.
茶树芽叶紫化的生理生化分析及其关键酶基因的表达   总被引:2,自引:0,他引:2  
从生理生化和分子水平方面比较了茶树紫化芽叶与成熟绿色叶片的差异。结果表明,紫色幼嫩新梢中茶多酚、儿茶素总量、咖啡碱含量高于成熟绿色叶片,差异达到极显著。光合色素中,成熟绿叶样品中叶绿素及叶绿素a、b的含量、类胡萝卜素的含量极显著高于幼嫩紫叶样品,花青素含量极显著低于幼嫩紫叶;在研究的9个花青素合成途径关键酶基因中,实时荧光定量PCR分析表明,PAL、C4H、CHS、CHI、F3H、F3'H、F3'5'H、DFR和ANS在幼嫩紫叶中均呈上调表达,从而促进花青素的合成,使芽叶呈现紫色。  相似文献   

8.
类黄酮3'-羟化酶(flavonoid 3′-hydroxylase,F3'H)属于细胞色素P450家族(cytochromeP450,CYP450),在植物主要成色物质花青素的合成中发挥重要作用。本实验以‘八卦洲水芹’以及紫色叶柄突变型水芹为实验材料,利用RT-PCR方法,从紫色叶柄突变型水芹的cDNA中克隆得到编码类黄酮3'-羟化酶的基因,命名为OjF3'H1。序列分析显示,OjF3'H1基因全长1575bp,共编码524个氨基酸。OjF3'H1蛋白相对分子质量为58292.59,理论等电点为6.77。系统进化分析显示,OjF3'H1蛋白具有高度保守性,与同属伞形科的胡萝卜F3'H1进化关系最近。OjF3'H1编码的蛋白属于疏水蛋白,无序化比例为5.53%,空间结构主要由α-螺旋和β-折叠组成。实时定量PCR分析显示,OjF3'H1在不同品种水芹茎中相对表达量有明显差异,紫色叶柄突变型水芹中OjF3'H1的表达量明显比‘八卦洲水芹’中高。  相似文献   

9.
植物花青素合成代谢途径及其分子调控   总被引:4,自引:0,他引:4  
植物花青素是一种天然食用色素,具有安全、无毒的特点,具有预防心脑血管疾病、保护肝脏与抗癌等多种重要的营养和药理功能。因此,花青素在食品、医药保健、园艺和作物改良等方面均具有重要研究价值和应用潜力。该文综述了植物花青素合成代谢途径及其分子调控研究进展,概述了植物花青素的生物合成、代谢以及积累过程,重点介绍了影响植物花青素代谢的结构基因和调控基因及其作用机制,同时展望了花青素合成代谢相关基因的研究应用前景和发展趋势。  相似文献   

10.
MYB转录因子是植物最大的转录因子家族之一,广泛参与植物各种生理生化过程。该研究通过对小麦基因组测序数据库进行同源搜索,利用电子克隆技术从紫色籽粒小麦品种‘高原115’中分离得到了一个新的MYB基因TaMYB3-4 D。结果表明,TaMYB3-4D仅含有一个内含子,其编码蛋白含有2个连续的MYB结构域,为典型的R2R3-MYB蛋白。TaMYB3-4D系统发生关系上与调控花青素合成的MYB基因亲缘关系较近。TaMYB3-4 D与bHLH基因ZmR瞬时表达能够诱导白色胚芽鞘中花青素的合成。此外,TaMYB3-4 D基因仅在‘高原115’含花青素的种皮和胚芽鞘中表达,在根、茎、叶中均未表达。研究表明,TaMYB3-4 D基因是一个具有调控花青素合成代谢功能的R2R3-MYB基因,很有可能参与小麦花青素的生物合成。  相似文献   

11.
The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5' position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the enzyme that hydroxylates the 5' position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3'5'H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3'5'H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3'5'H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species.  相似文献   

12.
Shih CH  Chu IK  Yip WK  Lo C 《Plant & cell physiology》2006,47(10):1412-1419
Three unique sorghum flavonoid 3'-hydroxylase (F3'H) cDNAs (SbF3'H1, SbF3'H2 and SbF3'H3) were discovered through bioinformatics analysis. Their encoded proteins showed >60% identity to the Arabidopsis TT7 (F3'H) protein. Overexpression of SbF3'H1 or SbF3'H2 restored the ability of tt7 mutants to produce 3'-hydroxylated flavonoids, establishing their roles as functional F3'H enzymes. In sorghum mesocotyls, SbF3'H1 expression was involved in light-specific anthocyanin accumulation while SbF3'H2 expression was involved in pathogen-specific 3-deoxyanthocyanidin synthesis. No SbF3'H3 expression was detected in all tissues examined. The sorghum mesocotyls represent a good system for investigation of differential regulation of F3'H genes/alleles responding to different external stimuli.  相似文献   

13.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

14.
15.
大豆种皮色相关基因研究进展   总被引:3,自引:0,他引:3  
Song J  Guo Y  Yu LJ  Qiu LJ 《遗传》2012,34(6):687-694
大豆种皮色在从野生大豆到栽培大豆的演变过程中逐渐从黑色变成黄色,是重要的形态标记,因此,大豆种皮色相关基因研究无论对进化理论还是育种实践都具有重要的意义。种皮颜色是通过各种花色苷的沉积而形成的。虽然很多植物色素沉积的分子调控机制比较明晰,但大豆中控制种皮颜色形成的基因尚未被完全了解。文章综述了控制大豆种皮色基因与位点的相关研究进展,主要有I、T、W1、R、O 5个经典遗传位点,其中I位点被定位在第8号染色体(A2连锁群)一个富含查尔酮合成酶(CHS)的区域,CHS基因在大豆中是多基因家族且同源性较高;定位于第6号染色体(C2连锁群)T位点的基因F3’H已被克隆和转基因验证,由于碱基缺失导致所编码的氨基酸缺少了保守域GGEK,从而不能与血红素结合而丧失功能;R位点定位在第9号染色体(K连锁群)A668-1与K387-1两标记之间,可能是R2R3类MYB转录因子,也可能是UDP类黄酮3-O糖基转移酶;O位点定位在第8号染色体(A2连锁群)Satt207与Satt493两标记之间,其分子特性尚不清楚;W1位点可能由F3’5’H基因控制遗传。  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号