首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the P450 dependent flavonoid hydroxylase from the ornamental plant Catharanthus roseus. cDNAs were obtained by heterologous screening with the CYP75 Hf1 cDNA from Petunia hybrida. The C. roseus protein shared 68-78% identity with other CYP75s, and genomic blots suggested one or two genes. The protein was expressed in Escherichia coli as translational fusion with the P450 reductase from C. roseus. Enzyme assays showed that it was a flavonoid 3', 5'-hydroxylase, but 3'-hydroxylated products were also detected. The substrate specificity was investigated with the C. roseus enzyme and a fusion protein of the Petunia hybrida CYP75 with the C. roseus P450 reductase. Both enzymes accepted flavanones as well as flavones, dihydroflavonols and flavonols, and both performed 3'- as well as 3'5'-hydroxylation. Kinetics with C. roseus cultures on the level of enzyme activity, protein and RNA showed that the F3'5'H was present in dark-grown cells and was induced by irradiation. The same results were obtained for cinnamic acid 4-hydroxylase and flavanone 3beta-hydroxylase. In contrast, CHS expression was strictly dependent on light, although CHS is necessary in the synthesis of the F3'5'H substrates. Immunohistochemical localization of F3'5'H had not been performed before. A comparison of CHS and F3'5'H in cotyledons and flower buds from C. roseus identified CHS expression preferentially in the epidermis, while F3'5'H was only detected in the phloem. The cell-type specific expression suggests that intercellular transport may play an important role in the compartmentation of the pathways to the different flavonoids.  相似文献   

2.
3.
Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.  相似文献   

4.
5.
UDP-glucose: anthocyanin 5-O-glucosyltransferase (5-GT) is responsible for the modification of anthocyanins to more stable molecules in complexes for co-pigmentation, supposedly resulting in a purple hue. The cDNA encoding 5-GT was isolated by a differential display applied to two different forms of anthocyanin production in Perilla frutescens var. crispa. Differential display was carried out for mRNA from the leaves of reddish-purple and green forms of P. frutescens, resulting in the isolation of five cDNA clones predominantly expressed in the red form. The cDNA encoded a polypeptide of 460 amino acids, exhibiting a low homology with the sequences of several glucosyltransferases including UDP-glucose: anthocyanidin 3-O-glucosyltransferase. By using this cDNA as the probe, we also isolated a homologous cDNA clone from a petal cDNA library of Verbena hybrida. To identify the biochemical function of the encoded proteins, these cDNAs were expressed in Saccharomyces cerevisiae cells. The recombinant proteins in the yeast extracts catalyzed the conversion of anthocyanidin 3-O-glucosides into the corresponding anthocyanidin 3,5-di-O-glucosides using UDP-glucose as a cofactor, indicating the identity of the cDNAs encoding 5-GT. Several biochemical properties (optimum pH, Km values, and sensitivity to inhibitors) were similar to those reported previously for 5-GTs. Southern blot analysis indicated the presence of two copies of 5-GT genes in the genome of both red and green forms of P. frutescens. The mRNA accumulation of the 5-GT gene was detected in the leaves of the red form but not in those of the green form and was induced by illumination of light, as observed for other structural genes for anthocyanin biosynthesis in P. frutescens.  相似文献   

6.
Cytochrome P450 cDNAs, AFNS2 and TFNS5, were isolated from snapdragon and torenia petal cDNA libraries, respectively, based on the sequence homology with licorice CYP93B1 cDNA encoding (2S)-flavanone 2-hydroxylase. They were expressed in yeast and identified to encode flavone synthase II catalyzing direct conversion of flavanones to flavones probably via 2-hydroxyflavanones.  相似文献   

7.
Flower colour and cytochromes P450   总被引:8,自引:0,他引:8  
Flavonoids are major constituents of flower colour. Plants accumulate specific flavonoids and thus every species often exhibits a limited flower colour range. Three cytochromes P450 play critical roles in the flavonoid biosynthetic pathway. Flavonoid 3′-hydroxylase (F3′H, CYP75B) and flavonoid 3′,5′-hydroxylase (F3′5′H, CYP75A) catalyze the hydroxylation of the B-ring of flavonoids and are necessary to biosynthesize cyanidin-(red to magenta) and delphinidin-(violet to blue) based anthocyanins, respectively. Pelargonidin-based anthocyanins (orange to red) are synthesized in their absence. Some species such as roses, carnations and chrysanthemums do not have violet/blue flower colour due to deficiency of F3′5′H. Successful expression of heterologous F3′5′H genes in roses and carnations results in delphinidin production, causing a novel blue/violet flower colour. Down-regulation of F3′H and F3′5′H genes has yielded orange petunia and pink torenia colour that accumulate pelargonidin-based anthocyanins. Flavone synthase II (CYP93B) catalyzes the synthesis of flavones that contribute to the bluing of flower colour, and modulation of FNSII gene expression in petunia and tobacco changes their flower colour. Extensive engineering of the anthocyanin pathway is therefore now possible, and can be expected to enhance the range of flower colours.  相似文献   

8.
The coordinate expression of anthocyanin biosynthetic genes in leaves and stems of a red forma of Perilla frutescens is presumably controlled by regulatory gene(s). A Myc-like gene (Myc-rp) was isolated from a cDNA library prepared from the leaves of red P. frutescens, and its deduced amino acid sequence shows 64% identity with that of delila from snapdragon. The Myc-rp gene was expressed in leaves and roots of both red and green P. frutescens equally. Comparison of deduced amino acid sequence of Myc-rp with that of Myc-gp, the second allele isolated from a green forma of P. frutescens, indicates that the 132nd amino acid, alanine, existing in MYC-RP was changed to serine in MYC-GP. The heterologous expression of these two alleles of Myc-like gene in tobacco and tomato resulted in an increase of the anthocyanin contents in flowers of tobacco and vegetative tissues and flowers of tomato. However, the flowers of transgenic tobacco expressing the fragment with a partial deletion (encoding 1–115 amino acids deleted) of Myc-gp gave no change in anthocyanin accumulation, but some morphological changes of the flower were observed. In yeast, the MYC-RP/GP and Delila protein exhibited transactivation activity on the GAL-1 promoter from yeast and the promoter of dihydroflavonol 4-reductase (DFR) gene from P. frutescens. A transactivation domain of MYC-RP/GP and Delila could be located in the region between the 193rd and the 420th amino acid of MYC-RP/GP proteins. Our data indicate that this Myc-like gene presumably functions in the regulation of anthocyanin biosynthesis similarly in different tissues of dicot plants.  相似文献   

9.
对红色、黄色、粉紫色和白色菊花品种不同开放度的花序舌状花中CHS、CHI、DFR、F3H、F3′H和3GT基因的表达量进行了相对定量分析。结果表显示:6个基因的表达因不同花色、不同发育阶段而异。‘钟山红鹰’(红色)中各基因的表达量均较高,且均在Ⅱ(松蕾期)或Ⅲ(半开期)期达到峰值,其中DFR、3GT基因的表达量远高于其他花色品种。‘金陵娇黄’(黄色)中CHS、CHI基因表达量较高,且Ⅰ(紧蕾期)、Ⅱ期表达量高于Ⅲ、Ⅳ(盛开期)期;3GT、DFR基因表达量分别高或低于‘金陵笑靥’(粉紫色)品种中相应基因的表达量,但均比红色品种低;F3H在4个品种中表达量最低,F3′H表达量接近或略低于红色或粉紫色品种,且各阶段表达水平较稳定。‘金陵笑靥’中DFR表达量仅次于‘钟山红鹰’,3GT和CHS表达量低于红色与黄色品种。‘钟山雪桂’(白色)中各基因仅有微量表达,除F3H外各基因的表达量明显低于其他花色品种。研究表明,花色素结构基因DFR、3GT是菊花花色素合成的关键基因,DFR很可能是限速关键基因,一定表达水平的CHS、CHI也是菊花花色素合成所必须的,F3H基因与花色素合成不存在直接相关。  相似文献   

10.
We have investigated metabolite profiles and gene expression in two chemo-varietal forms, red and green forms, of Perilla frutescens var. crispa. Striking difference in anthocyanin content was observed between the red and green forms. Anthocyanin, mainly malonylshisonin, was highly accumulated in the leaves of the red form but not in the green form. Less obvious differences were also observed in the stems. However, there was no remarkable difference in the contents and patterns of flavones and primary metabolites such as inorganic anions, organic anions and amino acids. These results suggest that only the regulation of anthocyanin production, but not that of other metabolites, differs in red and green forms. Microscopic observation and immunohistochemical studies indicated that the epidermal cells of leaves and stems are the sites of accumulation of anthocyanins and localization of anthocyanidin synthase protein. By differential display of mRNA from the leaves of red and green forms, we could identify several genes encoding anthocyanin-biosynthetic enzymes and presumptive regulatory proteins. The possible regulatory network leading to differential anthocyanin accumulation in a form-specific manner is discussed.  相似文献   

11.
12.
Anthocyanidin synthase (ANS), an enzyme of the biosynthetic pathway to anthocyanin, has been postulated to catalyze the reaction(s) from the colorless leucoanthocyanidins to the colored anthocyanidins. Although cDNAs have been isolated that encode putative ANS, which exhibits significant similarities in amino acid sequence with members of a family of 2-oxoglutarate-dependent oxygenases, no biochemical evidence has been presented which identifies the actual reaction that is catalyzed by ANS. Here we show that anthocyanidins are formed in vitro through 2-oxoglutarate-dependent oxidation of leucoanthocyanidins catalyzed by the recombinant ANS and subsequent acid treatment. A cDNA encoding ANS was isolated from red and green formas of Perilla frutescens by differential display of mRNA. Recombinant ANS tagged with maltose-binding-protein (MBP) was purified, and the formation of anthocyanidins from leucoanthocyanidins was detected by the ANS-catalyzed reaction in the presence of ferrous ion, 2-oxoglutarate and ascorbate, being followed by acidification with HCI. Equimolar stoichiometry was confirmed for anthocyanidin formation and liberation of CO2 from 2-oxoglutarate. The presumptive two-copy gene of ANS was expressed in leaves and stems of the red forma of P. frutescens but not in the green forma plant. This corresponds to the accumulation pattern of anthocyanin. The mechanism of the reaction catalyzed by ANS is discussed in relation to the molecular evolution of a family of 2-oxoglutarate-dependent oxygenases.  相似文献   

13.
Differential screening by PCR-select subtraction was carried out for cDNAs from leaves of red and green perilla, two chemovarietal forms of Perilla frutescens regarding anthocyanin accumulation. One hundred and twenty cDNA fragments were selected as the clones preferentially expressed in anthocyanin-accumulating red perilla over the nonaccumulating green perilla. About half of them were the cDNAs encoding the proteins related presumably to phenylpropanoid-derived metabolism. The cDNAs encoding glutathione S-transferase (GST), PfGST1, and chalcone isomerase (CHI), PfCHI1, were further characterized. The expression of PfGST1 in an Arabidopsis thaliana tt19 mutant lacking the GST-like gene involved in vacuole transport of anthocyanin rescued the lesion of anthocyanin accumulation in tt19, indicating a function of PfGST1 in vacuole sequestration of anthocyanin in perilla. The recombinant PfCHI1 could stereospecifically convert naringenin chalcone to (2S)-naringenin. PfGST1 and PfCHI1 were preferentially expressed in the leaves of red perilla, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. These results suggest that the genes of the whole anthocyanin biosynthetic pathway are regulated in a coordinated manner in perilla.  相似文献   

14.
15.
Cytochrome P450s in flavonoid metabolism   总被引:2,自引:0,他引:2  
In this review, cytochrome P450s characterized at the molecular level catalyzing aromatic hydroxylations, aliphatic hydroxylations and skeleton formation in the flavonoid metabolism are surveyed. They are involved in the biosynthesis of anthocyanin pigments and condensed tannin (CYP75, flavonoid 3′,5′-hydroxylase and 3′-hydroxylase), flavones [CYP93B, (2S)-flavanone 2-hydroxylase and flavone synthase II], and leguminous isoflavonoid phytoalexins [CYP71D9, flavonoid 6-hydroxylase; CYP81E, isoflavone 2′-hydroxylase and 3′-hydroxylase; CYP93A, 3,9-dihydroxypterocarpan 6a-hydroxylase; CYP93C, 2-hydroxyisoflavanone synthase (IFS)]. Other P450s of the flavonoid metabolism include methylenedioxy bridge forming enzyme, cyclases producing glyceollins, flavonol 6-hydroxylase and 8-dimethylallylnaringenin 2′-hydroxylase. Mechanistic studies on the unusual aryl migration by CYP93C, regulation of IFS expression in plant organs and its biotechnological applications are introduced, and flavonoid metabolisms by non-plant P450s are also briefly discussed.  相似文献   

16.
17.
Cytochrome P-450-dependent hydroxylases are typical enzymes for the modification of basic flavonoid skeletons. We show in this study that CYP71D9 cDNA, previously isolated from elicitor-induced soybean (Glycine max L.) cells, codes for a protein with a novel hydroxylase activity. When heterologously expressed in yeast, this protein bound various flavonoids with high affinity (1.6 to 52 microm) and showed typical type I absorption spectra. These flavonoids were hydroxylated at position 6 of both resorcinol- and phloroglucinol-based A-rings. Flavonoid 6-hydroxylase (CYP71D9) catalyzed the conversion of flavanones more efficiently than flavones. Isoflavones were hardly hydroxylated. As soybean produces isoflavonoid constituents possessing 6,7-dihydroxy substitution patterns on ring A, the biosynthetic relationship of flavonoid 6-hydroxylase to isoflavonoid biosynthesis was investigated. Recombinant 2-hydroxyisoflavanone synthase (CYP93C1v2) efficiently used 6,7,4'-trihydroxyflavanone as substrate. For its structural identification, the chemically labile reaction product was converted to 6,7,4'-trihydroxyisoflavone by acid treatment. The structures of the final reaction products for both enzymes were confirmed by NMR and mass spectrometry. Our results strongly support the conclusion that, in soybean, the 6-hydroxylation of the A-ring occurs before the 1,2-aryl migration of the flavonoid B-ring during isoflavanone formation. This is the first identification of a flavonoid 6-hydroxylase cDNA from any plant species.  相似文献   

18.
19.
To elucidate gene regulation of flower colour formation, the gene expressions of the enzymes involved in flavonoid biosynthesis were investigated in correlation with their product during floral development in lisianthus. Full-length cDNA clones of major responsible genes in the central flavonoid biosynthetic pathway, including chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3',5'-hydroxylase (F3'5'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and flavonol synthase (FLS), were isolated and characterized. In lisianthus, the stage of the accumulation of flavonols and anthocyanins was shown to be divided clearly. The flavonol content increased prior to anthocyanin accumulation during floral development and declined when anthocyanin began to accumulate. CHS, CHI, and F3H were necessary for both flavonol and anthocyanin biosynthesis and were coordinately expressed throughout all stages of floral development; their expressions were activated independently at the stages corresponding to flavonol accumulation and anthocyanin accumulation, respectively. Consistent with flavonol and anthocyanin accumulation patterns, FLS, a key enzyme in flavonol biosynthesis, was expressed prior to the expression of the genes involved in anthocyanin biosynthesis. The genes encoding F3'5'H, DFR, and ANS were expressed at later stages, just before pigmentation. The genes responsible for the flavonoid pathways branching to anthocyanins and flavonols were strictly regulated and were coordinated temporally to correspond to the biosynthetic order of their respective enzymes in the pathways, as well as in specific organs. In lisianthus, FLS and DFR, at the position of branching to flavonols and anthocyanins, were supposed to play a critical role in regulation of each biosynthesis.  相似文献   

20.
A Novel Method to Clone P450s with Modified Single-Specific-Primer PCR   总被引:1,自引:0,他引:1  
We present a method to identify cDNA clones of a cytochrome P450 enzyme. Flavonoid-3', 5'-Hydroxylase (F3',5'H), the key enzyme for the expression of blue or purple color in flowers, was cloned as an example. We have made a catalog of cDNA fragments encoding conserved regions of P450s for petunia (Petunia hybrida Vilm.) petals. Single specific primers were designed for these cDNA sequences and RT-PCRs were performed with cDNA templates. The amplified bands were tested for linkage to the delphinidin producing phenotype using a backcrossed population that had been prepared to have a genetic background of cyanidin-type petunia but segregated for the hydroxylation at the B-ring of anthocyanin. We were successful in amplifying a cDNA fragment that has close linkage to the F3',5'H gene. A full length cDNA clone of the F3',5'H gene was isolated using the amplified fragment as a probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号