首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
During exposure to anoxia, the crucian carp brain is able to maintain normal overall protein synthesis rates. However, it is not known if there are alterations in the synthesis or expression of specific proteins. This investigation addresses this issue by comparing the normoxic and anoxic brain proteome. Nine proteins were found to be reduced by anoxia. Reductions in the glycolytic pathway proteins creatine kinase, fructose biphosphate aldolase, glyceraldehyde‐3‐phosphate dehydrogenase, triosephosphate isomerase and lactate dehydrogenase reflect the reduced production and requirement for adenosine tri‐phosphate during anoxia. In terms of neural protection, voltage‐dependent anion channel, a protein associated with neuronal apoptosis, was reduced, along with gefiltin, a protein associated with the subsequent need for neuronal repair. Additionally the expression of proteins associated with neural degeneration and impaired cognitive function also declined; dihydropyrimidinase‐like protein‐3 and vesicle amine transport protein‐1. One protein was found to be increased by anoxia; pre‐proependymin, the precursor to ependymin. Ependymin fulfils multiple roles in neural plasticity, memory formation and learning, neuron growth and regeneration, and is able to reverse the possibility of apoptosis, thus further protecting the anoxic brain.  相似文献   

2.
3.
Anoxic brain function: molecular mechanisms of metabolic depression   总被引:1,自引:0,他引:1  
S P Brooks  K B Storey 《FEBS letters》1988,232(1):214-216
  相似文献   

4.
5.
6.
A hallmark of anoxia tolerance in western painted turtles is relative constancy of tissue adenylate concentrations during periods of oxygen limitation. During anoxia heart and brain intracellular compartments become more acidic and cellular energy demands are met by anaerobic glycolysis. Because changes in adenylates and pH during anoxic stress could represent important signals triggering metabolic and ion channel down-regulation we measured PCr, ATP and intracellular pH in turtle brain sheets throughout a 3-h anoxic-re-oxygenation transition with 31P NMR. Within 30 min of anoxia, PCr levels decrease 40% and remain at this level during anoxia. A different profile is observed for ATP, with a statistically significant decrease of 23% occurring gradually during 110 min of anoxic perfusion. Intracellular pH decreases significantly with the onset of anoxia, from 7.2 to 6.6 within 50 min. Upon re-oxygenation PCr, ATP and intracellular pH recover to pre-anoxic levels within 60 min. This is the first demonstration of a sustained reversible decrease in ATP levels with anoxia in turtle brain. The observed changes in pH and adenylates, and a probable concomitant increase in adenosine, may represent important metabolic signals during anoxia.  相似文献   

7.
The Western painted turtle survives months without oxygen. A key adaptation is a coordinated reduction of cellular ATP production and utilization that may be signaled by changes in the concentrations of reactive oxygen species (ROS) and cyclic nucleotides (cAMP and cGMP). Little is known about the involvement of cyclic nucleotides in the turtle’s metabolic arrest and ROS have not been previously measured in any facultative anaerobes. The present study was designed to measure changes in these second messengers in the anoxic turtle. ROS were measured in isolated turtle brain sheets during a 40-min normoxic to anoxic transition. Changes in cAMP and cGMP were determined in turtle brain, pectoralis muscle, heart and liver throughout 4 h of forced submergence at 20–22°C. Turtle brain ROS production decreased 25% within 10 min of cyanide or N2-induced anoxia and returned to control levels upon reoxygenation. Inhibition of electron transfer from ubiquinol to complex III caused a smaller decrease in [ROS]. Conversely, inhibition of complex I increased [ROS] 15% above controls. In brain [cAMP] decreased 63%. In liver [cAMP] doubled after 2 h of anoxia before returning to control levels with prolonged anoxia. Conversely, skeletal muscle and heart [cAMP] remained unchanged; however, skeletal muscle [cGMP] became elevated sixfold after 4 h of submergence. In liver and heart [cGMP] rose 41 and 127%, respectively, after 2 h of anoxia. Brain [cGMP] did not change significantly during 4 h of submergence. We conclude that turtle brain ROS production occurs primarily between mitochondrial complexes I and III and decreases during anoxia. Also, cyclic nucleotide concentrations change in a manner suggestive of a role in metabolic suppression in the brain and a role in increasing liver glycogenolysis.  相似文献   

8.
Intact turtle brain provides a useful model for the study of anoxia and potential survival strategies, since this tissue maintains transmembrane ion gradients and ATP levels during prolonged anoxia and recovers functional activity afterwards. Since isolated tissues offer experimental advantages, the present study sought to determine effects of anoxia on the isolated turtle cerebellum and to define relationships between anoxia survival and glucose supply. In normoxia, the extracellular potassium ([K+]o) activity and evoked potentials were maintained with 5 mM glucose, but 20 mM glucose was required to maintain adenosine triphosphate (ATP) levels and prevent significant increases in [K+]o during anoxia. Inhibition of glycolysis by iodoacetic acid (IAA) during anoxia provoked large increases in [K+]o at all glucose levels. These results demonstrate the usefulness of the isolated turtle cerebellum for studies of anoxic survival since this tissue can maintain ATP levels and [K+]o during prolonged anoxia with 20 mM glucose in the artificial cerebrospinal fluid medium. They also suggest the presence of a Pasteur effect at least during the transition to a hypometabolic state.  相似文献   

9.
10.
ABSTRACT

Bovine liver adenosine kinase is a 43 kDa protein that catalyzes the transfer of phosphate from GTP or ATP to adenosine. Its immunological properties were compared to other GTP-binding proteins of ~ 40 kDa, in particular those involved in signal transduction, such as Gs and Gi, the stimulatory and inhibitory regulatory proteins of adenylyl cyclase, Gt, from the visual excitation system, and Go, a similar protein of unknown function. Antibodies elicited in rabbits against adenosine kinase did not significantly cross-react with other guanyl nucleotide-binding proteins. Antibodies against the other GTP-binding proteins did not react with adenosine kinase. Thus these GTP-binding proteins do not exhibit immunological cross-reactivity.  相似文献   

11.
Freshwater turtles survive prolonged anoxia and reoxygenation without overt brain damage by well-described physiological processes, but little work has been done to investigate the molecular changes associated with anoxic survival. We examined stress proteins and apoptotic regulators in the turtle during early (1 h) and long-term anoxia (4, 24 h) and reoxygenation. Western blot analyses showed changes within the first hour of anoxia; multiple stress proteins (Hsp72, Grp94, Hsp60, Hsp27, and HO-1) increased while apoptotic regulators (Bcl-2 and Bax) decreased. Levels of the ER stress protein Grp78 were unchanged. Stress proteins remained elevated in long-term anoxia while the Bcl-2/Bax ratio was unaltered. No changes in cleaved caspase 3 levels were observed during anoxia while apoptosis inducing factor increased significantly. Furthermore, we found no evidence for the anoxic translocation of Bax from the cytosol to mitochondria, nor movement of apoptosis inducing factor between the mitochondria and nucleus. Reoxygenation did not lead to further increases in stress proteins or apoptotic regulators except for HO-1. The apparent protection against cell damage was corroborated with immunohistochemistry, which indicated no overt damage in the turtle brain subjected to anoxia and reoxygenation. The results suggest that molecular adaptations enhance pro-survival mechanisms and suppress apoptotic pathways to confer anoxia tolerance in freshwater turtles.  相似文献   

12.
Summary Three G proteins from human brain membranes were purified to near homogeneity by conventional techniques including preparative electrophoresis. These G proteins were characterized by their ability to bind GTP, GDP and GTP analogs. Two of these proteins have molecular weights of 50,000 (G50) and 36,000 (G36), as determined on SDS-gels. G36 was ADP-ribosylated by pertussis toxin. Thus, G50 could represent a Gsα subunit, whereas G36 could be Giα or Goα. G50 was phosphorylated by cAMP dependent protein kinase and protein kinase C. G36 was phosphorylated by a protein kinase independent of calcium and phospholipid, a proteolytic product of protein kinase C, analogous to protein kinase M. Phosphorylation of G36 by this protein kinase induced a dramatic decrease in its GTPase activity. The third G protein, of molecular weight 22,000 probably belongs to the group of monomeric G proteins possessing functional similarities withras gene products. The regulation of G proteins involving calcium-dependent and independent pathways is delineated.  相似文献   

13.
Clinical usage of lidocaine, a pro‐oxidant has been linked with severe, mostly neurological complications. The mechanism(s) causing these complications is independent of the blockade of voltage‐gated sodium channels. The budding yeast Saccharomyces cerevisiae lacks voltage‐gated sodium channels, thus provides an ideal system to investigate lidocaine‐induced protein and pathway alterations. Whole‐proteome alterations leading to these complications have not been identified. To address this, S. cerevisiae was grown to stationary phase and exposed to an LC50 dose of lidocaine. The differential proteomes of lidocaine treatment and control were resolved 6 h post exposure using 2D DIGE. Amine reactive dyes and carbonyl reactive dyes were used to assess protein abundance and protein oxidation, respectively. Quantitative analysis of these dyes (? 1.5‐fold alteration, p ? 0.05) revealed a total of 33 proteoforms identified by MS differing in abundance and/or oxidation upon lidocaine exposure. Network analysis showed enrichment of apoptotic proteins and cell wall maintenance proteins, while the abundance of proteins central to carbohydrate metabolism, such as triosephosphate isomerase and glyceraldehyde‐3‐phosphate dehydrogenase, and redox proteins superoxide dismutase and peroxiredoxin were significantly decreased. Enzymes of carbohydrate metabolism, such as phosphoglycerate kinase and enolase, the TCA cycle enzyme aconitase, and multiple ATP synthase subunits were found to be oxidatively modified. Also, the activity of aconitase was found to be decreased. Overall, these data suggest that toxic doses of lidocaine induce significant disruption of glycolytic pathways, energy production, and redox balance, potentially leading to cell malfunction and death.  相似文献   

14.
BACKGROUND AND AIMS: Anoxia-tolerant plant tissues synthesize a number of proteins during anoxia, in addition to the 'classical anaerobic proteins' involved in glycolysis and fermentation. The present study used a model system of rice coleoptile tips to elucidate patterns of protein synthesis in this anoxia-tolerant plant tissue. METHODS: Coleoptile tips 7-11 mm long were excised from intact seedlings exposed to anoxia, or excised from hypoxically pre-treated seedlings and then exposed to anoxia for 72 h. Total proteins or 35S-labelled proteins were extracted, separated using two-dimensional isoelectric focusing/SDS-polyacrylamide gel electrophoresis and analysed using mass spectrometry. KEY RESULTS: The coleoptile tips excised after intact seedlings had been exposed to anoxia for 72 h had a similar proteome to tips that were first excised and then exposed to anoxia. After 72 h anoxia, Bowman-Birk trypsin inhibitors and a glycine-rich RNA-binding protein decreased in abundance, whereas a nucleoside diphosphate kinase and several proteins with unknown functions were strongly enhanced. Using [35S]methionine as label, proteins synthesized at high levels in anoxia, and also in aeration, included a nucleoside diphosphate kinase, a glycine-rich RNA-binding protein, a putative elicitor-inducible protein and a putative actin-depolymerizing factor. Proteins synthesized predominately in anoxia included a pyruvate orthophosphate dikinase (PPDK), alcohol dehydrogenase 1 and 2, fructose 1,6-bisphosphate aldolase and a protein of unknown function. CONCLUSION: The induction of PPDK in anoxic rice coleoptiles might, in combination with pyruvate kinase (PK), enable operation of a 'substrate cycle' producing PPi from ATP. Production of PPi would (a) direct energy to crucial transport processes across the tonoplast (i.e. the H+-PPiase); (b) be required for sucrose hydrolysis via sucrose synthase; and (c) enable acceleration of glycolysis, via pyrophosphate:fructose 6-phosphate 1-phosphotransferase (PFP) acting in parallel with phosphofructokinase (PFK), thus enhancing ATP production in anoxic rice coleoptiles; ATP production would need to be increased if there was a substantial requirement for PPi.  相似文献   

15.
Neuroglobin (Ngb) is an oxygen binding heme protein found in nervous tissue with a yet unclear physiological and protective role in the hypoxia-sensitive mammalian brain. Here we utilized in vivo and in vitro studies to examine the role of Ngb in anoxic and post-anoxic neuronal survival in the freshwater turtle. We employed semiquantitative RT-PCR and western blotting to analyze Ngb mRNA and protein levels in turtle brain and neuronally enriched cultures. Ngb expression is strongly up-regulated by hypoxia and post-anoxia reoxygenation but increases only modestly in anoxia. The potential neuroprotective role of Ngb in this species was analyzed by knocking down Ngb using specific small interfering RNA. Ngb knockdown in neuronally enriched cell cultures resulted in significant increases in H2O2 release compared to controls but no change in cell death. Cell survival may be linked to activation of other protective responses such as the extracellular regulated kinase transduction pathway, as phosphorylated extracellular regulated kinase levels in anoxia were significantly higher in Ngb knockdown cultures compared to controls. The greater expression of Ngb when reactive oxygen species are likely to be high, and the increased susceptibility of neurons to H2O2 release and external oxidative stress in knockdown cultures, suggests a role for Ngb in reducing reactive oxygen species production or in detoxification, though it does not appear to be of primary importance in the anoxia tolerant turtle in the presence of compensatory survival mechanisms.  相似文献   

16.
Metabotropic glutamate receptors (mGluRs) control intracellular signaling cascades through activation of G proteins. The inwardly rectifying K+ channel, GIRK, is activated by the βγ subunits of Gi proteins and is widely expressed in the brain. We investigated whether an interaction between mGluRs and GIRK is possible, using Xenopus oocytes expressing mGluRs and a cardiac/brain subunit of GIRK, GIRK1, with or without another brain subunit, GIRK2. mGluRs known to inhibit adenylyl cyclase (types 2, 3, 4, 6, and 7) activated the GIRK channel. The strongest response was observed with mGluR2; it was inhibited by pertussis toxin (PTX). This is consistent with the activation of GIRK by Gi/Go-coupled receptors. In contrast, mGluR1a and mGluR5 receptors known to activate phospholipase C, presumably via G proteins of the Gq class, inhibited the channel''s activity. The inhibition was preceded by an initial weak activation, which was more prominent at higher levels of mGluR1a expression. The inhibition of GIRK activity by mGluR1a was suppressed by a broad-specificity protein kinase inhibitor, staurosporine, and by a specific protein kinase C (PKC) inhibitor, bis-indolylmaleimide, but not by PTX, Ca2+ chelation, or calphostin C. Thus, mGluR1a inhibits the GIRK channel primarily via a pathway involving activation of a PTX-insensitive G protein and, eventually, of a subtype of PKC, possibly PKC-μ. In contrast, the initial activation of GIRK1 caused by mGluR1a was suppressed by PTX but not by the protein kinase inhibitors. Thus, this activation probably results from a promiscuous coupling of mGluR1a to a Gi/Go protein. The observed modulations may be involved in the mGluRs'' effects on neuronal excitability in the brain. Inhibition of GIRK by phospholipase C–activating mGluRs bears upon the problem of specificity of G protein (GIRK interaction) helping to explain why receptors coupled to Gq are inefficient in activating GIRK.  相似文献   

17.
The GnRH receptor is coupled to G proteins of the families Gq and G11. Gq and G11 coupling leads to intracellular signaling through the phospholipase C pathway. GnRHR coupling to other G proteins is controversial. This study provides evidence that G protein families Gs, Gi, Gq and G11 complete for binding with the GnRHR. We quantified interactions of over-expressed G proteins with GnRHR by a competitive binding approach, using measurements of second messengers, IP and cAMP. Transient co-transfection of HEK293 cells with human WT GnRHR and with stimulatory and inhibitory G proteins (Gq, G11 and Gs, Gi) led to either production or inhibition of total inositol phosphate (IP) production, depending on the G protein that was over-expressed. Studies were conducted in different human (COS7, HeLa) and rodent-derived (CHO-K1, GH3) cell lines in order to confirm that G protein promiscuity observed with the GnRHR was not limited to a particular cell type.  相似文献   

18.
19.
20.
Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P < 0.05); refeeding reversed these changes (P < 0.05). Consistent with these effects being regulated by S6K1, activation of this kinase was suppressed by FD (-91%, P < 0.05) but was increased by refeeding. Gavaging rats subjected to FD with a mixture of amino acids partially restored muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P < 0.0001). Thus feeding stimulates fractional protein synthesis in skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号