首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
Hypoxia-ischemia with reperfusion is known to cause reactive oxygen species-related damage in mammalian systems, yet, the anoxia tolerant freshwater turtle is able to survive repeated bouts of anoxia/reoxygenation without apparent damage. Although the physiology of anoxia tolerance has been much studied, the adaptations that permit survival of reoxygenation stress have been largely ignored. In this study, we examine ROS production in the turtle striatum and in primary neuronal cultures, and examine the effects of adenosine (AD) on cell survival and ROS. Hydroxyl radical formation was measured by the conversion of salicylate to 2,3-dihydroxybenzoic acid (2,3-DHBA) using microdialysis; reoxygenation after 1 or 4 h anoxia did not result in increased ROS production compared with basal normoxic levels, nor did H2O2 increase after anoxia/reoxygenation in neuronally enriched cell cultures. Blockade of AD receptors increased both ROS production and cell death in vitro , while AD agonists decreased cell death and ROS. As turtle neurons proved surprisingly susceptible to externally imposed ROS stress (H2O2), we propose that the suppression of ROS formation, coupled to high antioxidant levels, is necessary for reoxygenation survival. As an evolutionarily selected adaptation, the ability to suppress ROS formation could prove an interesting path to investigate new therapeutic targets in mammals.  相似文献   

2.
Abstract: Involvement of reactive oxygen species has been implicated in plant defence against pathogens. We report here a novel pathway of H2O2 generation induced by the addition of phosphate in soybean ( Glycine max L.) cell suspension cultures. This H2O2 generation was initiated shortly after the addition of phosphate, and lasted only approximately one hour, as opposed to several hours observed during an attack by an avirulent strain of the bacterial pathogen Pseudomonas syringae pv. glycinea (Psg). In addition, when cell cultures were treated with both phosphate and the avirulent pathogen, two distinct oxidative burst events were observed. In contrast to DPI-sensitive Psg -induced H2O2 generation, phosphate-induced H2O2 generation was insensitive to this NADPH oxidase inhibitor. This suggests that an NADPH oxidase-independent pathway may be involved in the phosphate-induced H2O2 accumulation, which could be involved in sensing of phosphate availability in the environment.  相似文献   

3.
4.
Reactive oxygen species (ROS) have traditionally been viewed as a toxic group of molecules; however, recent publications have shown that these molecules, including H2O2, can also strongly promote cell survival. Even though the retina has a large capacity to produce ROS, little is known about its non-mitochondrial sources of these molecules, in particular the expression and function of NADPH oxidase (Nox) proteins which are involved in the direct generation of superoxide and indirectly H2O2. This study demonstrated that 661W cells, a retina-derived cell line, and mouse retinal explants express Nox2, Nox4 and certain of their well-established regulators. The roles of Nox2 and Nox4 in producing pro-survival H2O2 were determined using 661W cells and some of the controlling factors were identified. To ascertain if this phenomenon could have physiological relevance, the novel technique of time-lapse imaging of dichlorofluorescein fluorescence (generated upon H2O2 production) in retinal explants was established and it showed that explants also produce a burst of H2O2. The increase in H2O2 production was partly blocked by an inhibitor of Nox proteins. Overall, this study demonstrates a pro-survival role of Nox2 and Nox4 in retina-derived cells, elucidates some of the regulatory mechanisms and reveals that a similar phenomenon exists in retinal tissue as a whole.  相似文献   

5.
Abstract: H2O2 and free radical-mediated oxidative stresses have been implicated in mediating amyloid β(1–40) [Aβ(1–40)] neurotoxicity to cultured neurons. In this study, we confirm that addition of the H2O2-scavenging enzyme catalase protects neurons in culture against Aβ-mediated toxicity; however, it does so by a mechanism that does not involve its ability to scavenge H2O2. Aβ-mediated elevation in intracellular H2O2 production is suppressed by addition of a potent H2O2 scavenger without any significant neuroprotection. Three intracellular biochemical markers of H2O2-mediated oxidative stress were unchanged by Aβ treatment: (a) glyceraldehyde-3-phosphate dehydrogenase activity, (b) hexose monophosphate shunt activity, and (c) glucose oxidation via the tricarboxylic acid cycle. Ionspray mass spectra of Aβ in the incubation medium indicated that Aβ itself is an unlikely source of reactive oxygen species. In this study we demonstrate that intracellular ATP concentration is compromised during the first 24-h exposure of neurons to Aβ. Our results challenge a pivotal role for H2O2 generation in mediating Aβ toxicity, and we suggest that impairment of energy homeostasis may be a more significant early factor in the neurodegenerative process.  相似文献   

6.
Abstract: Inorganic phosphate (Pi) plays a vital role in intracellular energy metabolism. Its many effects include stimulation of glucose use, enhancement of high-energy phosphate concentrations, and modulation of cytosolic free [Ca2+]. Cultured fetal rat cortical neurons constitutively import Pi, and cytosolic levels positively correlate with [ATP], [NADPH], and energy charge. In the present study, we demonstrate that the concentration of intracellular Pi is an important determinant of acute neuronal survival after an excitotoxic or oxidative insult to cultured fetal rat cortical neurons. Extracellular Pi dose-dependently enhanced survival of cortical neurons after exposure to NMDA at early (≤6 h) time points after termination of the insult. Pi similarly increased neuronal survival after exposure to kainic acid or H2O2. Pi-exposed neurons had higher basal intracellular [Pi], [ATP], and [GSH], and slightly lower cytosolic free [Ca2+], compared with Pi-deprived neurons. Pi-exposed neurons maintained increased [ATP] after exposure to NMDA and displayed reduced formation of reactive oxygen species after exposure to kainic acid or H2O2, compared with Pi-deprived neurons. These findings demonstrate that changes in extracellular and intracellular Pi can affect neuronal survival after excitotoxic or oxidative insults.  相似文献   

7.
8.
Abstract Reactivation of UV-irradiated phage b-1 was induced by H2O2 and UV in Bacteroides fragilis . The characteristics of H2O2 and UV induced phage reactivation differ from a previously reported oxygen induced reactivation system. The survival of B. fragilis cells after UV irradiation was also increased by pretreatment with H2O2. DNA synthesis was not inhibited in the host cells exposed to H2O2 concentrations which induced phage reactivation. The pattern of DNA degradation and synthesis after UV irradiation with and without H2O2 differed from the effect of O2 on DNA synthesis in irradiated B. fragilis cells.  相似文献   

9.
Oxidative stress has long been linked to cell death in many neurodegenerative conditions. Treatment with antioxidants is a promising approach for slowing disease progression. In this study, we used the neuroblastoma SH-SY5Y cells as an in vitro model to first assess the effect of polypeptide from Chlamys farreri (PCF), a natural marine antioxidant, on H2O2-induced neuronal cell death. Pre-treatment of SH-SY5Y cells with PCF inhibited H2O2-induced cell death in a concentration-dependent manner. In parallel, intracellular reactive oxygen species generation and lipid peroxidation were inhibited by PCF. Under severe H2O2 insult, PCF promoted endogenous antioxidant defense components including glutathione peroxidase, catalase, superoxide dismutase, and glutathione. PCF also protected DNA from oxidative damage and enhanced the removal of 8-oxo-7,8-dihydro-2'-deoxyguanosine from DNA. Further, we found that PCF potentially prevented H2O2–induced cell apoptosis. When investigated mitogen-activated protein kinase signaling pathway, we found that pre-treatment of cells with PCF significantly blocked H2O2–induced phosphorylation of c- Jun N-terminal kinase of the mitogen-activated protein kinase family. However, PCF had little inhibitory effect on the H2O2–induced activation of extracellular signal-regulated kinase. Taken together, these data demonstrate that PCF prevents oxidative stress-induced reactive oxygen species production and c- Jun N-terminal kinase activation and may be useful in the treatment of neurodegenerative diseases.  相似文献   

10.
11.
Taxicity of oxygen species such as free radicals and H2O2 has been invoked to explain a number of degradative processes in plants, most involving photo-oxidation. Since catalase is a major protectant against accumulation and toxicity of H2O2, we examined alterations in catalase activity in several plant species ( Pisum sativum L. cv. Greenfeast, Vigna radiata (L.) R. Wilcz, Cucumis sativus L. cv. Heinz Pickling, and Passiflora spp.) during chilling, and compared this change to change in H2O2 content. Catalase activity was reduced in a range of chilling sensitive and tolerant species by exposure to low temperature. This reduction in catalase activity correlated better with the onset of visible symptoms than with the treatment itself. Visible injury in turn was dependent on light and temperature differences. Hydrogen peroxide concentrations invariably decreased with low temperatures.
Reduction in catalase activity therefore does not necessarily imply accumulation of H2O2 to damaging levels. The absence of a clear inverse relationship between catalase activity and H2O2 concentration suggests the continued activity of other reactions that remove H2O2 and these may be important in the tolerance of plants to oxidative attack. Loss of catalase activity may result from the inability of damaged peroxisomal membranes to transport catalase precursors into the peroxisome.  相似文献   

12.
The figleaf gourd ( Cucurbita ficifolia Bouché) root system has the ability to take up water and nutrients at low soil temperatures, and in the present paper, we attempt to reveal some of the molecular mechanisms behind this low-temperature tolerance. Exposure of figleaf gourd root system to low temperature induced accumulation of H2O2 along the plasma membrane but not in the cytoplasm. H+-ATPase (EC 3.6.1.35) activity of isolated root plasma membranes and root hydraulic conductivity ( Lpr ) were largely insensitive to externally applied H2O2. However, using bromocresol purple, it was shown that the acidification of the medium surrounding the root was strongly inhibited with low temperature- and H2O2-treated roots. Addition of catalase (EC 1.11.1.6) to the root medium during low-temperature exposure led to a recovery of H+-efflux along the root surface and increased Lpr , demonstrating the importance of an H2O2 detoxification system in the root cells. Additional evidence for an increased Lpr was obtained by the Fenton reaction wherein a warming of the solution increased the activity of the detoxification system. All available evidence suggests that the ability of figleaf gourd root system to maintain a low level of H2O2 in the cytoplasm and to detoxify reactive oxygen species is related to the maintenance of water transport activity at low temperatures.  相似文献   

13.
The Dutch elm disease (DED) pathogen Ophiostoma novo-ulmi Buissm. elicited the production of H2O2 in cell suspension cultures of the resistant species Ulmus pumila L. This response was not observed in suspensions of the susceptible elm U. campestris Mill. H2O2 production started after a lag time of 30–40 min following inoculation, peaked between 4 and 6 h and lasted up to 24 h. Treatment of the suspensions with exogenously added H2O2 did not cause accumulation of the sesquiterpene phytoalexins mansonones nor of the coumarin scopoletin. Spore germination and growth of O. novo-ulmi were significantly delayed with different amounts of H2O2 (0.1–1 m M ). These results suggest that H2O2 production is an inducible defence response which may contribute to DED resistance by delaying the growth of the pathogen at the earliest stages of infection. Whether H2O2 is involved in other elm defence responses to the pathogen is presently unknown, but its production seems to be an independent event from phytoalexin formation.  相似文献   

14.
The hydrogen peroxide (H2O2) stress response in Enterococcus faecalis ATCC19433 was investigated. A 2·4 mmol l−1 H2O2 pretreatment conferred protection against a lethal concentration (45 mmol l−1) of this agent. The relatively high concentrations of H2O2 used for adaptation and challenge treatments in Ent. faecalis emphasised the strong resistance towards oxidative stress in this species. Various stresses (NaCl, heat, ethanol, acidity and alkalinity) induced weak or strong H2O2 cross-protection. This paper describes the involvement of protein synthesis in the active response to lethal dose of H2O2, in addition to the impressive enhancement of synthesis of five H2O2 stress proteins. Combined results suggest that these proteins might play an important role in the H2O2 tolerance response.  相似文献   

15.
Abstract The white-rot fungus Junghuhnia separabilima (Pouz.)Ryv, showed high levels of laccase production in cultures supplemented with veratric acid. Laccase, lignin peroxidase and an unknown peroxidase were separated from the extracellular culture fluid using anion-exchange FPLC. Three laccase species, three lignin peroxidases and a novel heme-containing protein were characterized by gel electrophoresis and isoelectric focusing. The new hemoprotein has a molecular mass of 44 kDa, isoelectric point of 3,4 and pH optimum of 5.5 for oxidation of o -dianisidine in the presence of H2O2. However it oxidised diaminobenzidine and guaiacol in the absence of H2O2. Veratryl alcohol and phenol red were not substratesfor this enzyme with or without addition of H2O2 and Mn(II). In addition the enzyme did not produce H2O2.  相似文献   

16.
Abstract Bacteroides fragilis Bf-2 cells were more sensitive to far-UV radiation, N -methyl- N '-nitrosoguanidine, ethylmethane sulphonate, acriflavine and mitomycin C under aerobic conditions than under anaerobic conditions. The opposite effect was observed with H2O2-treated cells and exposure to O2 enhanced the survival of H2O2-treated cells. Pretreatment of cells with sublethal concentrations of H2O2 also increased the survival of H2O2-treated cells. Reactivation of UV- and X-irradiated and methylmethane sulphonate and H2O2-treated phage b-1 was induced by O2 and H2O2 in B. fragilis .  相似文献   

17.
Elevated levels of salicylic acid (SA) are required for the induction of systemic acquired resistance (SAR) in plants. Recently, a salicylic acid-binding protein (SABP) isolated from tobacco was shown to have catalase activity. Based on this finding elevated levels of hydrogen peroxide (H2O2) were postulated to act as a second messenger of SA in the SAR signal transduction pathway. A series of experiments have been carried out to clarify the role of H2O2 in SAR-signaling. No increase of H2O2 was found during the onset of SAR. Induction of the SAR gene, PR-1, by H2O2 and H2O2-inducing chemicals is strongly suppressed in transgenic tobacco plants that express the bacterial salicylate hydroxylase gene, indicating that H2O2 induction of SAR genes is dependent on SA accumulation. Following treatment of plants with increasing concentrations of H2O2, a dose-dependent accumulation of total SA species was found, suggesting that H2O2 may induce PR-1 gene expression through SA accumulation. While the results do not support a role for H2O2 in SAR signaling, it is suggested that SA inhibition of catalase activity may be important in tissues undergoing a hypersensitive response.  相似文献   

18.
Abstract The tripeptide γ-l-glutamyl-l-cystinylglycine (glutathione) is one of the major antioxidant molecules of cells and is thought to play a vital role in buffering the cell against reactive oxygen species and toxic electrophiles. We wished to determine the role of glutathione in the protection of the yeast Saccharomyces cerevisiae against oxidative stress. This study shows that glutathione is an important antioxidant molecule in yeast, with γ-glutamylcysteine synthetase ( gshI ) mutants, deficient in glutathione synthesis, being hypersensitive to H2O2 and Superoxide anions in both exponential- and stationary-phase cultures. Despite this, these mutants are still able to induce adaptive stress responses to oxidants.  相似文献   

19.
Detection of hydrogen peroxide produced by meat lactic starter cultures   总被引:1,自引:1,他引:0  
Twelve strains of meat lactic starter cultures (Pediococcus spp. and Lactobacillus plantarum) were found to produce hydrogen peroxide in vitro. The (cumulative) amounts of H2O2 produced were measured through the peroxidative action of catalase on H2O2 and oxidation of added formate to CO2 by the H2O2-catalase complex formed. There was a problem in building a calibration curve for converting values of formate oxidation into amounts of H2O2, either by adding H2O2 directly to the assay mixture or having it produced via a glucose-glucose oxidase system.  相似文献   

20.
Elimination of calcium ions from the medium of undifferentiated cell cultures of Digitalis thapsi increased cardenolide production and induced extracellular H2O2 accumulation, as measured by the quenching of pyranine fluorescence. The addition of catalase reduced the response and the inclusion of superoxide dismutase enhanced the loss of fluorescence. This suggested that, besides H2O2, the superoxide anion was also formed before dismutating to H2O2. Additionally, exogenous H2O2 or superoxide dismutase stimulated cardenolide production whereas the addition of catalase markedly reduced it. These results point to a connection between H2O2 and cardenolide formation. The absence of calcium did not alter the levels of lipid peroxidation products; however, changes in the antioxidant system of D. thapsi cells were observed. Catalase activity was extremely low in control cultures and remained unaltered upon calcium elimination. Ascorbate peroxidase activity was not modified in calcium-free cultures. By contrast, calcium deprivation stimulated superoxide dismutase activity and strongly inhibited glutathione reductase activity. Also, a significant decrease in reduced glutathione was observed. These responses were emulated by treatment of the cultures with the glutathione biosynthesis inhibitor buthionine sulfoximine and by ethyleneglycol-bis-β-aminoethyl ether and LaCl3. All these results indicate that the depletion of extracellular calcium induces changes in the redox state of cells and suggest that this alteration stimulates cardenolide formation in D. thapsi cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号