首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of environmental anoxia and anoxic sulphide exposure on metabolism are measured in tissues of the clam, Arctica islandica. Under anoxia the total activity of glycogen phosphorylase and the percentage of the enzyme in the active a form are significantly reduced. Alterations in pyruvate kinase kinetics produce slightly increased Vmax values, strongly increased S0.5 PEP, slightly increased S0.5 ADP in the muscular tissues and mantle, and strongly reduced I50 for alanine (up to 90-fold increased sensitivity). Anoxia also stimulates a reduction of fructose-2,6-bisphosphate levels, an effector of phosphofructokinase, in all tissues tested. These effects are consistent with enzyme modifications induced by phosphorylation to produce a restricted activity. Anoxic sulphide exposure produced similar effects on the glycogenolytic enzyme glycogen phosphorylase (GP), as does anoxia alone. In the course of the experiments, mitochondrial energy metabolism is not affected by sulphide. The accumulation of the anaerobic indicator metabolite succinate is almost identical in adductor and foot under both stresses. The data suggest a similar coordinated metabolic rate control under environmental anoxia and anoxic sulphide exposure, i.e. H2S has no distinctly different effects on the parameters tested. This study provides evidence that while being burrowed in anoxic sediments, the clams are able to withstand the detrimental effects of sulphide for a substantial period of time.  相似文献   

3.
Perfusion of normal rat livers under anoxic conditions or the addition of KCN to aerobic perfusions activated phosphorylase and stimulated glycogen breakdown and glucose output. Livers from rats with a deficiency of liver phosphorylase kinase (gsd/gsd) showed a much smaller activation of phosphorylase with anoxia or KCN and produced glucose at about half the rate of normal livers. The increase in phosphorylase a in gsd/gsd livers was insufficient to account for the increase in glucose output. The addition of KCN to normal hepatocytes, activated phosphorylase and stimulated glucose output almost as effectively as glucagon. Hepatocytes from gsd/gsd rats showed only a very small increase in phosphorylase a on the addition of KCN, and glucose output did not increase. We conclude that in the perfused liver, anoxia and KCN stimulate glycogen breakdown and glucose output, at least in part, by a mechanism that does not involve conversion of phosphorylase b to phosphorylase a. In isolated hepatocytes KCN stimulates glucose output only by increasing the content of phosphorylase a.  相似文献   

4.
Seasonal changes in the activity of glycogen phosphorylase (GP), a rate-limiting enzyme of glycogen degradation, were examined in an anoxia-tolerant fish species, the crucian carp (Carassius carassius L.). In muscle and brain, the activity of GP remained constant throughout the year when tested at 25°C. In contrast, the activities of liver and heart GP displayed striking increases in summer. When seasonal temperature changes are taken into account, the activity of GP during the anoxic mid-winter is only 4–6% of its summer time activity in the muscle, heart and liver, and 13% in brain. In winter-acclimatized fish, experimental anoxia (1–6 weeks) caused sustained depression of the GP activity in heart and gills. In liver and muscle, a transient depression of GP activity occurred during the first week of anoxia but later GP activity recovered back to the normoxic level. GP of the brain was completely resistant to anoxia. In all studied tissues, the constitutive activity of GP is more than sufficient to degrade glycogen deposits during winter anoxia without anoxia-induced activation of GP. The seemingly paradoxical summer-time increase in the activity of liver and heart GP could be related to active life-style of the summer-acclimatized fish (growth, reproduction), the increased demand of energy and molecular precursors of anabolic metabolism being satisfied by preferential degradation of glycogen. The high glycogen content of winter-acclimatized crucian carp is not associated with the elevated GP activity or anoxic activation of GP.  相似文献   

5.
Summary Concentrations of glycolytic intermediates, end products of anaerobic metabolism and the adenylates have been determined in the foot muscle and in the whole soft body tissue of the cockle,Cardium tuberculatum, after anoxic incubation and after the performance of vigorous escape movements. Comparison of the mass action ratios (MAR) with the equilibrium constants (Keq) showed that the reactions catalyzed by glycogen phosphorylase, hexokinase, phosphofructokinase (PFK) and pyruvate kinase (PK) were displaced from equilibrium under all physiological situations investigated.Changes in the levels of the glycolytic intermediates showed that activation of phosphofructokinase is largely responsible for the 100-fold increase of glycolytic flux in the foot muscle during exercise.Analysis of the whole soft body tissue showed that PFK is also involved in reduction of the glycolytic flux during anoxia, but a more pronounced change in the MAR occurs for PK, indicating that PK is strongly inhibited under these conditions.Differences in the regulation of glycolysis in muscular and non-muscular tissues can be related to changes in metabolite levels and to tissue-specific forms of pyruvate kinase with different regulatory properties.  相似文献   

6.
On the mechanism of hepatic glycogenolysis induced by anoxia or cyanide   总被引:1,自引:0,他引:1  
Addition of glucagon to isolated hepatocytes increased glycogenolysis and phosphorylase a in a proportional manner. KCN caused slightly more glycogenolysis at considerably lower levels of phosphorylase a; the discrepancy was most pronounced after pretreatment of the hepatocytes with EGTA. When incubated with tagatose, the hepatocytes accumulated tagatose 1-phosphate, a presumed inhibitor of phosphorylase a. In these conditions the glucagon-induced glycogenolysis was blocked, but the glycogen loss caused by KCN or anoxia was not affected. Cyanide and anoxia may allow phosphorylase b and a to become equally active, or they may trigger a non-phosphorolytic glycogenolysis.  相似文献   

7.
Anoxia-tolerant animal models are crucial to understand protective mechanisms during low oxygen excursions. As glycogen is the main fermentable fuel supporting energy production during oxygen tension reduction, understanding glycogen metabolism can provide important insights about processes involved in anoxia survival. In this report we studied carbohydrate metabolism regulation in the central nervous system (CNS) of an anoxia-tolerant land snail during experimental anoxia exposure and subsequent reoxygenation. Glucose uptake, glycogen synthesis from glucose, and the key enzymes of glycogen metabolism, glycogen synthase (GS) and glycogen phosphorylase (GP), were analyzed. When exposed to anoxia, the nervous ganglia of the snail achieved a sustained glucose uptake and glycogen synthesis levels, which seems important to maintain neural homeostasis. However, the activities of GS and GP were reduced, indicating a possible metabolic depression in the CNS. During the aerobic recovery period, the enzyme activities returned to basal values. The possible strategies used by Megalobulimus abbreviatus CNS to survive anoxia are discussed.  相似文献   

8.
Selected glycolytic enzymes (including phosphoglucose isomerase, aldolase, glyceraldehyde phosphate dehydrogenase, enolase, pyruvate kinase and lactate dehydrogenase), as well as glycogen phosphorylase, creatine kinase, and adenylate kinase, bound to phosphofructokinase immobilized on an agarose gel. The affinity of phosphofructokinase to these various proteins differed, with phosphorylase exhibiting the strongest binding. Binding was reversed either by: (1) elution with high-ionic-strength buffer (0.4 M KCl); (2) the addition of a 5-10 mM concentration of ATP; or (3) high concentrations of fructose 6-phosphate (5 mM).  相似文献   

9.
Abstract: Anoxia elevates levels of cyclic AMP and depresses levels of cyclic GMP in cerebral cortex of mice. Similar effects are also observed in other regions of the brain. Aminophylline inhibits accumulation of cyclic AMP about 50% in hippocampus and cerebellum, but not in cerebral cortex and striaturn; however, this effect requires high doses (250 mgikg). Pretreatment of animals with reserpine, which depletes brain stores of norepinephrine, dopamine, and serotonin, and also produces sedation and mild hypothermia, markedly inhibits accumulation of cyclic AMP in all regions of anoxic brain. Destruction of norepinephrine terminals by treatment of neonatal animals with 6-OH- dopamine, which does not sedate or produce hypothermia, has an effect on cyclic AMP levels similar to that of reserpine. None of the above treatments modifies the effect of anoxia on cyclic GMP levels. These data indicate that norepinephrine is a major regulator of cyclic AMP levels in anoxic brain and that adenosine and, perhaps, other unidentified substances have lesser roles in this process. In contrast, biogenic amines and adenosine appear to have no effect on cyclic GMP regulation in anoxic brain. Reserpine slows the activation of phosphorylase and the utilization of ATP, and slightly attenuates the breakdown of glycogen caused by anoxia, but has no effect on the changes in glucose, lactate, or phosphocreatine. In contrast, 6-OH-dopamine has no effect on any of these anoxiainduced changes. It is concluded that the effect of reserpine on phosphorylase, glycogen, and ATP is most likely related to the hypothermic and sedative effect of the drug, and that either cyclic AMP is not responsible for initiating glycogenolysis in anoxic brain or only a small rise in cyclic AMP levels is necessary for this process.  相似文献   

10.
Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehyde-fixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

11.
Abstract: The presence of glycogen in astroglia-rich primary cultures derived from the brains of newborn rats depends on the availability of glucose in the culture medium. On glucose deprivation, glycogen vanishes from the astroglial cultures. This decrease of glycogen content is completely prevented if 2-deoxyglucose in a concentration of > 1 m M or 1,5-gluconolactone (20 m M ) is present in the culture medium. 2-Deoxyglucose itself or 3- O -methylglucose, a glucose derivative that is not phosphorylated by hexokinase, does not reduce the activity of glycogen phosphorylase purified from bovine brain or in the homogenate of astroglia-rich rat primary cultures. In contrast, deoxyglucose-6-phosphate strongly inhibits the glycogen phosphorylase activities of the preparations. Half-maximal effects were obtained at deoxyglucose-6-phosphate concentrations of 0.75 (phosphorylase a, astroglial culture), 5 (phosphorylase b, astroglial culture), 2 (phosphorylase a, bovine brain), or 9 m M (phosphorylase b, bovine brain). Thus, the block of glycogen degradation in these cells appears to be due to inhibition of glycogen phosphorylase by deoxyglucose-6-phosphate rather than deoxyglucose itself. These results suggest that glucose-6-phosphate, rather than glucose, acts as a physiological negative feedback regulator of the brain isoenzyme of phosphorylase and thus of glycogen degradation in astrocytes.  相似文献   

12.
Summary Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehydefixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

13.
To understand the control mechanisms involved in the regulation of fetal glycogen, we have studied the effect of in utero fetal decapitations on glycogen metabolism in rabbit fetal heart, lung, and liver. In utero fetal decapitations were performed between days 18 and 21 of gestation. Two to four fetuses on one side of the horn were decapitated. Fetuses were delivered between days 23 and 26 or between days 28 and 30 of gestation. Fetal heart, lungs, and liver were analyzed for DNA, protein, glycogen, glycogen synthase (I and D forms), glycogen phosphorylase (a and b forms), phosphofructokinase, pyruvate kinase, and lactic dehydrogenase. In fetal heart and lung, no difference was observed in any of the above measurements in the intact and decapitated fetuses. In contrast, fetal liver does not appear to develop the glycogen system as indicated by the very low levels of glycogen (0.02 mg/mg DNA) in decapitated fetuses as compared with intact fetuses (0.4 mg/mg DNA). Similarly the levels of glycogen synthase and phosphorylase were two to three times lower in livers from decapitated fetuses as compared with the livers from intact fetuses. The three enzymes phosphofructokinase, pyruvate kinase, and lactic dehydrogenase were not affected by fetal decapitation in all three tissues. These results indicate that the fetal hypothalamic-pituitary-adrenal (thyroid) axis is not required at least after day 18 of gestation for the normal accumulation and subsequent utilization of glycogen in fetal heart and lungs, while it is an absolute requirement for the development of the fetal liver glycogen system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The following parameters were determined in the rabbit psoas muscle after perfusion in the presence of either insulin, propranolol, or isoproterenol: Concentrations of cyclic AMP, glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glucose-1-phosphate, glucose 6-phosphate, and fructose-1,6-bisphosphate. Maximum and "regulatory" activities of the enzymes glycogen phosphorylase, glycogen synthase, phosphofructokinase, and histone-phosphorylating protein kinase.  相似文献   

15.
The Western painted turtle survives months without oxygen. A key adaptation is a coordinated reduction of cellular ATP production and utilization that may be signaled by changes in the concentrations of reactive oxygen species (ROS) and cyclic nucleotides (cAMP and cGMP). Little is known about the involvement of cyclic nucleotides in the turtle’s metabolic arrest and ROS have not been previously measured in any facultative anaerobes. The present study was designed to measure changes in these second messengers in the anoxic turtle. ROS were measured in isolated turtle brain sheets during a 40-min normoxic to anoxic transition. Changes in cAMP and cGMP were determined in turtle brain, pectoralis muscle, heart and liver throughout 4 h of forced submergence at 20–22°C. Turtle brain ROS production decreased 25% within 10 min of cyanide or N2-induced anoxia and returned to control levels upon reoxygenation. Inhibition of electron transfer from ubiquinol to complex III caused a smaller decrease in [ROS]. Conversely, inhibition of complex I increased [ROS] 15% above controls. In brain [cAMP] decreased 63%. In liver [cAMP] doubled after 2 h of anoxia before returning to control levels with prolonged anoxia. Conversely, skeletal muscle and heart [cAMP] remained unchanged; however, skeletal muscle [cGMP] became elevated sixfold after 4 h of submergence. In liver and heart [cGMP] rose 41 and 127%, respectively, after 2 h of anoxia. Brain [cGMP] did not change significantly during 4 h of submergence. We conclude that turtle brain ROS production occurs primarily between mitochondrial complexes I and III and decreases during anoxia. Also, cyclic nucleotide concentrations change in a manner suggestive of a role in metabolic suppression in the brain and a role in increasing liver glycogenolysis.  相似文献   

16.
17.
Summary. The physiological function of brain glycogen and the role of phosphorylase kinase as a regulatory enzyme in the cascade of reactions associated with glycogenolysis in the brain have not been fully elucidated. As a first step toward elucidating such a function, we studied the localization of phosphorylase kinase in glial and neuronal primary cell cultures, and in adult rat brain slices, using a rabbit polyclonal antibody against skeletal muscle glycogen phosphorylase kinase. Immunocytochemical examination of rat astroglia-rich primary cultures revealed that a large number of cells were positive for glycogen phosphorylase kinase immunoreactivity. These cells were also positive for vimentin, a marker for immature glia, while they were negative for glial fibrillary acidic protein, a marker for mature astroglia, and for galactocerebroside, an oligodendroglial marker. Neurons in rat neuron-rich primary cultures did not show any kinase-positive staining. In paraformaldehyde-fixed adult rat brain sections, phosphorylase kinase immunoreactivity was detected in glial-like cells throughout the brain, with relatively high staining found in the cerebral cortex, the cerebellum, and the medulla oblongata. Phosphorylase kinase immunoreactivity could not be detected in neurons, with the exception of a group of large neurons in the brain stem, most likely belonging to the mesencephalic trigeminal nucleus. Phosphorylase kinase was also localized in the choroid plexus and to a lesser degree in the ependymal cells lining the ventricles. Phosphorylase kinase thus appears to have the same cellular distribution in nervous tissue as its substrates, i.e. glycogen phosphorylase and glycogen, which suggests that the physiological role of brain phosphorylase kinase is the mobilization of glycogen stores to fuel the increased metabolic demands of neurons and astrocytes.  相似文献   

18.
The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced an activation of glycogen phosphorylase and an inactivation of glycogen synthase when added to the cdc35 mutant incubated at the restrictive temperature of 35 degrees C without affecting cyclic AMP concentration.  相似文献   

19.
Our previous reports have demonstrated frequent and strong expression of glycogen phosphorylase (EC 2.4.1.1) activity mainly in the cytoplasm of gastric carcinoma. Although previous studies have suggested the phosphorylase glyco-syltransferase system to be in the nucleus from enzyme histochemical analyses, intranuclear localization of the phosphorylase has not been fully established. The aims of the present study are to investigate the nuclear localization of glycogen phosphorylase and to identify the isoform of phosphorylase in the nucleus of gastrointestinal carcinoma. The activity of glycogen phosphorylase in carcinoma cells corresponding to the nucleus was demonstrated using enzyme cytochemical analysis. The phosphorylase activity coincided with localization revealed by immunocytochemistry using affinity-purified specific anti-human brain-type glycogen phosphorylase antibody. The isoform expressed in the nuclei of carcinoma cells was identified as bei ng only the brain type according to a polymerase chain reaction-based assay using RNA obtained from gastric carcinoma cells and primers specific to muscle, liver and brain types of glycogen phosphorylase. The intranuclear localization of the brain-type isoform was confirmed by immunoelectron microscopical analyses. Further investigation to examine the nuclear localization in human carcinoma tissue (145 and 25 specimens with gastric and colonic carcinoma respectively) was carried out by immunohistochemistry using specific anti-brain-type antibody. Nuclear immunostaining was observed in seven cases out of 145 gastric carcinoma. The present study is the first to clarify the nuclear localization of glycogen phosphorylase with enzymatic activity in gastrointestinal carcinoma. The isoform of the enzyme expressed in the carcinoma was identified as the brain type. These results warrant further studies on the mechanisms for transporting the large molecule of brain-type glycogen phosphorylase to nuclei and its function in the nucleus of carcinoma cells.  相似文献   

20.
A novel inhibitor of liver glycogen phosphorylase, isofagomine, was investigated as a possible inhibitor of the enzyme in the brain and in cultured astrocytes. Additionally, the effect of the drug on norepinephrine (NE) induced glycogen degradation in astrocytes was studied. Astrocytes were cultured from mouse cerebral cortex and homogenates were prepared from the cells as well as from mouse brain. Isofagomine dose-dependently inhibited glycogen phosphorylase when measured in the direction of glycogen degradation in both preparations with IC50 values (mean +/- SEM) of 1.0 +/- 0.1 microM and 3.3 +/- 0.5 microM in brain and astrocyte homogenates, respectively. Moreover, isofagomine at a concentration of 400 microM completely prevented NE induced depletion of glycogen stores and the concomitant lactate production in intact astrocytes. It is suggested that this novel glycogen phosphorylase inhibitor may be a valuable tool to investigate the functional importance of glycogen in astrocytes and in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号