首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 375 毫秒
1.
利用显微和细胞化学方法, 对毛竹( Phyllostachys edulis) 茎秆纤维次生壁形成过程中超微结构变化以及ATP 酶、Ca2+ -ATPase 和酸性磷酸酶的超微细胞化学定位进行了研究。研究发现, 次生壁形成早期,细胞核具有双层核膜, 染色质凝聚, 可见大量的线粒体、粗面内质网和高尔基体等细胞器存在于纤维细胞中; 随后, 双层核膜消失, 细胞器将逐渐解体, 多泡体开始出现在纤维细胞的细胞质; 随着年龄的增加,纤维细胞壁逐渐增厚, 并出现多层结构现象, 而运输小泡、细胞膜、胞间连丝和凝聚的染色质将持续存在。在次生壁形成的整个过程中, ATP 酶、Ca2+ -ATPase 和酸性磷酸酶在运输小泡、细胞膜、质膜内陷、胞间连丝和凝聚的染色质中将持续存在。结果表明, 毛竹茎秆纤维细胞是一种不同于木本双子叶植物的长寿细胞, 纤维原生质体中ATP 酶和酸性磷酸酶的持续存在与次生壁的持续增厚密切相关。  相似文献   

2.
毛竹茎秆纤维细胞发育过程中ATP酶的超微细胞化学定位研究   总被引:10,自引:0,他引:10  
采用磷酸铅沉淀技术,对毛竹茎秆纤维细胞发育过程中的ATP酶进行了超微细胞化学定位研究.在初生壁形成时期,大量的ATP酶的活性产物沉积在质膜、质膜内陷、运输小泡、胞间连丝等膜体系以及细胞核和各种细胞器上;在次生壁形成的初期,ATP酶在多泡小体和裂解的液泡膜上出现,凝聚并边缘化的染色质上仍然具有ATP酶活性;随着次生壁的逐渐加厚,在前四年中持续存在具有ATP酶活性的质膜内陷结构,以后消失;而在六年生纤维细胞的质膜、运输小泡、纹孔、胞间连丝和凝聚化的染色质上仍然发现有明显的ATP酶分布,并发现在染色质上ATP酶活性会随着凝聚程度的加深而增强.结果表明,ATP酶在毛竹茎秆纤维细胞壁的整个形成过程中发挥重要作用,而纤维细胞的次生壁形成过程是一个由核基因控制的主动的PCD过程;并证实毛竹茎秆纤维细胞的发育有别于其它木本植物纤维细胞的发育过程,这种纤维细胞是一种典型的长寿细胞.  相似文献   

3.
甘小洪  丁雨龙 《植物学报》2004,21(2):180-188
利用透射和扫描电镜观察了毛竹(Phyllostachys edulis (Carr.) H. De Lehaie)茎秆纤维发育过程中的超微结构变化。在纤维细胞初生壁形成期,细胞质中线粒体、内质网、高尔基体等细胞器数量有明显的增加,出现大量的由内质网与高尔基体分泌形成的运输小泡,周质微管平行分布于质膜内侧,出现环状片层结构,并在细胞壁与质膜之间出现壁旁体结构。随着次生壁的逐渐形成,细胞质中细胞器逐渐地解体并出现多泡小体;纤维细胞核出现染色质凝聚并边缘化,但在8 年生的纤维中可以持续存在;在纤维次生壁形成的整个阶段都存在与周围细胞相联系的胞间连丝和运输小泡;次生壁 在前4 年加厚明显,以后加厚程度减缓,但可以持续很长一段时间,并随着加厚出现宽窄交替的多层结构。结果表明,线粒体、内质网、高尔基体和壁旁体等细胞器与周质微管一起参与了初生壁和次生壁早期的形成;纤维细胞次生壁的形成过程就是一个漫长的程序性细胞死亡(PCD),而PCD 的产物与胞间连丝一起参与了次生壁的形成与加厚;染色质凝聚并边缘化的细胞核与胞间连丝的持续存在,证明毛竹茎秆纤维细胞是一种典型的长寿细胞。  相似文献   

4.
毛竹茎秆纤维发育过程的超微结构观察   总被引:8,自引:0,他引:8  
利用透射和扫描电镜观察了毛竹(Phyllostachys edulis(Carr.)H.De Lehaie)茎秆纤维发育过程中的超微结构变化.在纤维细胞初生壁形成期,细胞质中线粒体、内质网、高尔基体等细胞器数量有明显的增加,出现大量的由内质网与高尔基体分泌形成的运输小泡,周质微管平行分布于质膜内侧,出现环状片层结构,并在细胞壁与质膜之间出现壁旁体结构.随着次生壁的逐渐形成,细胞质中细胞器逐渐地解体并出现多泡小体;纤维细胞核出现染色质凝聚并边缘化,但在8年生的纤维中可以持续存在;在纤维次生壁形成的整个阶段都存在与周围细胞相联系的胞间连丝和运输小泡;次生壁在前4年加厚明显,以后加厚程度减缓,但可以持续很长一段时间,并随着加厚出现宽窄交替的多层结构.结果表明,线粒体、内质网、高尔基体和壁旁体等细胞器与周质微管一起参与了初生壁和次生壁早期的形成;纤维细胞次生壁的形成过程就是一个漫长的程序性细胞死亡(PCD),而PCD的产物与胞间连丝一起参与了次生壁的形成与加厚;染色质凝聚并边缘化的细胞核与胞间连丝的持续存在,证明毛竹茎秆纤维细胞是一种典型的长寿细胞.  相似文献   

5.
利用TUNEL检测、细胞学及细胞化学方法,对毛竹茎秆纤维细胞发育过程中的细胞程序性死亡进行了研究。在次生壁形成的早期,纤维细胞出现染色质凝聚、细胞器膨胀、液泡膜解体和细胞质泡状化等典型的细胞程序性死亡形态学特征;TUNEL检测反应呈阳性,显示此时的纤维细胞核DNA发生了片段化。此时,在纤维细胞裂解的液泡膜、降解的细胞质和凝聚的染色质上具有ATPase活性。纤维细胞质的Ca^2+水平会随着次生壁的形成而逐渐升高,随后Ca^2+聚集成块状。在初生壁形成后期,纤维细胞染色质上的酸性磷酸酶(APase)活性增强。随着纤维次生壁的持续增厚,ATPase、酸性磷酸酶和Ca^2+将在裂解的细胞质和凝聚的染色质上持续存在多年。结果表明,毛竹茎秆纤维细胞的次生壁形成过程是一个主动自溶的细胞程序性死亡过程。初生壁形成后期染色质上酸性磷酸酶活性增强及次生壁形成期胞质Ca^2+的聚集,与纤维细胞的程序性死亡密切相关。ATPase,Ca^2+和APase参与了纤维细胞程序性死亡过程中原生质体的降解。  相似文献   

6.
利用TUNEL检测、细胞学及细胞化学方法,对毛竹茎秆纤维细胞发育过程中的细胞程序性死亡进行了研究。在次生壁形成的早期,纤维细胞出现染色质凝聚、细胞器膨胀、液泡膜解体和细胞质泡状化等典型的细胞程序性死亡形态学特征;TUNEL检测反应呈阳性,显示此时的纤维细胞核DNA发生了片段化。此时,在纤维细胞裂解的液泡膜、降解的细胞质和凝聚的染色质上具有ATPase活性。纤维细胞质的Ca2+水平会随着次生壁的形成而逐渐升高,随后Ca2+聚集成块状。在初生壁形成后期,纤维细胞染色质上的酸性磷酸酶(APase)活性增强。随着纤维次生壁的持续增厚,ATPase、酸性磷酸酶和Ca2+将在裂解的细胞质和凝聚的染色质上持续存在多年。结果表明,毛竹茎秆纤维细胞的次生壁形成过程是一个主动自溶的细胞程序性死亡过程。初生壁形成后期染色质上酸性磷酸酶活性增强及次生壁形成期胞质Ca2+的聚集,与纤维细胞的程序性死亡密切相关。ATPase,Ca2+和APase参与了纤维细胞程序性死亡过程中原生质体的降解。  相似文献   

7.
毛竹茎纤维次生壁形成过程的超微结构观察   总被引:6,自引:0,他引:6  
利用透射电镜观察了毛竹(Phyllostachys pubescens Mazel)茎纤维发育过程中次生壁的形成过程。纤维发育早期,细胞具有较大的细胞核和核仁;细胞质浓稠,具有核糖体、线粒体和高尔基体等细胞器。随着纤维次生壁的形成,细胞壁加厚,细胞质变得稀薄,内质网和高尔基体的数量明显增加,并且两者共同参与了运输小泡的形成;在质膜内侧可观察到大量周质微管分布。随着次生壁的进一步加厚及木质化,细胞壁  相似文献   

8.
百合花粉母细胞间染色质穿壁运动前(细线期到偶线期)的花药,用一般电镜制片法和铅沉淀法对酸性磷酸酶活性的细胞化学反应产物的定位实验,其结果总结如下:(1)形成次生胞间连丝通道水解作用所需的酶可能是由“类溶酶体”小泡或由内质网腔直接分泌的;(2)次生胞间连丝通道的水解作用,可在细胞壁的两边细胞同时开始,先形成半胞间连丝,然后贯穿??在一起;或从一侧开始,一直穿孔到另一边,最后两者都能形成胞间连丝;(3)用铅沉淀法进行的酸性磷酸酶细胞化学的定位实验表明:在质膜、内质网、类溶酶体小泡中的酶活性反应产物沉积的部位与一般电镜法制备的切片上看到的电子致密度物质的分布情况完全一致,(4)用X-射线微区能谱分析的结果表明:沉淀物中含有铅元素,确实是磷酸铅。因此我们推测所谓“类溶酶体”以及内质网所分泌的水解酶,可能具有果胶酶、纤维素酶和半纤维素酶的性质,它们都能降解、穿孔各自的细胞壁形成胞间连丝。  相似文献   

9.
厚壁毛竹快速高生长期竹秆ATP酶超微细胞化学定位   总被引:1,自引:0,他引:1  
采用电镜细胞化学技术对厚壁毛竹(Phyllostachys edulis ‘Pachyloen’)快速高生长期竹秆节间的伸长发育过程(包括:分生细胞期、伸长初期、快速伸长期和成熟期四个阶段)进行ATP酶超微细胞化学定位,以揭示竹秆节间快速伸长的细胞学基础。结果表明:分生细胞期,细胞质膜、核膜、细胞器膜系统上等均有很强的ATP酶活性。伸长初期,节间上部基本组织细胞质膜上ATP酶活性较强,且短细胞质膜上的ATP酶活性更强,节间基部各细胞均未观察到ATP酶活性。快速伸长期,节间基部基本组织ATP酶活性较节间上部高,细胞质膜、运输小泡膜、胞间隙及胞间连丝上均有ATP酶活性。成熟期,仅节间上部基本组织质膜上有较弱的ATP酶活性。ATP酶在节间伸长过程中主要参与新细胞壁物质的分泌和共质体运输,促进新细胞壁的形成,晶体和淀粉粒体外膜上ATP酶活性的存在表明其具有贮存物质的作用。节隔缺失节的节间基部未观察到ATP酶活性,节部韧皮结细胞ATP酶活性较高,节隔的缺失引起节部与节间与物质运输有关结构的变化,进而影响节间伸长生长。  相似文献   

10.
杂交鹅掌楸体胚发生过程中ATP酶活性的超微细胞化学定位   总被引:2,自引:0,他引:2  
利用透射式电镜,通过胚性细胞的超微切片观察,对杂交鹅掌楸体细胞胚胎发生和发育过程中ATP酶活性进行了超微细胞化学定位.结果表明,非胚性细胞的质膜、液泡膜等膜系统当中存在ATP酶活性,质体、核膜、细胞壁以及细胞间隙上有少许沉积;早期胚性细胞ATP酶反应产物主要沉积于质膜、液泡膜上、淀粉粒、细胞壁加厚处;胚性细胞后期ATP酶活性从质膜逐渐转移入细胞内,细胞质、壁旁体、胞间连丝、细胞膜与细胞间隙、细胞核等处均有ATP酶活性反应.随着胚性细胞的发育及分裂,包裹细胞的厚壁、细胞核、核仁与染色质等处也出现ATP酶活性反应沉淀物.说明杂交鹅掌楸体细胞胚胎发生及发育过程中存在丰富的能量代谢.  相似文献   

11.
Ultrastructural changes in secondary wall formation of Phyllostachys pubescens Mazel fiber were investigated with transmission electron microscopy. Fiber developed initially with the elongation of cells containing ribosomes, mitochondria and Golgi bodies in the dense cytoplasm. During the wall thickening, the number of rough endoplasmic reticulum and Golgi bodies increased apparently. There were two kinds of Golgi vesicles, together with the ones from endoplasmic reticulum formed transport vesicles. Many microtubules were arranged parallel to the long axis of the cell adjacent to the plasmalemma. Along with the further development of fiber, polylamellate structure of the secondary wall appeared, with concurrent agglutination of chromatin in the nucleus, swelling and disintegration of organelles, while cortical microtubules were still arranged neatly against the inner side of plasmalemma. Lomasomes could be observed between the wall and plasmalemma. The results indicated that the organelles, such as Golgi bodies together with small vesicles, rough endoplasmic reticulum and lomasomes, played the key role in the thickening and lignification of the secondary wall of bamboo fiber, though cortical microtubules were correlative with the process as well.  相似文献   

12.
用电镜和细胞化学技术对毛竹[Phyllostachys edulis(Carr.)H.De Lehaie]节部“韧皮部结”发育过程中Ca^2+-ATP酶进行了超微细胞化学定位研究.结果显示:在“韧皮部结”形成期,仅细胞质膜和细胞核上具有很高的Ca^2+-ATP酶活性;随着“韧皮部结”的发育,发育期细胞质膜上的Ca^2+-ATP酶活性较形成期有所降低,而细胞核上仍保持较高的Ca^2+-ATP酶活性,胞间连丝、运输小泡膜上都具有Ca^2+-ATP酶活性;发育后期,液泡膜及内质网上也开始出现Ca^2+-ATP酶沉积物;成熟期的“韧皮部结”细胞质膜上的Ca^2+-ATP酶活性较发育期有所升高,并且在“韧皮部结”成熟的过程中,细胞核、内质网、胞间连丝、质体膜和细胞质降解物上始终都有较高的Ca^2+-ATP酶活性.实验结果表明“韧皮部结”细胞具有活跃的生理代谢以及频繁的共质体运输和信息交流.  相似文献   

13.
大豆子叶内酸性磷酸酶活性的超微结构定位   总被引:6,自引:0,他引:6  
开花后35~50 d 期间和萌发早期(播种后4~8 d)的大豆(Glycinem ax L.)种子中,酸性磷酸酶主要分布在子叶细胞中的蛋白体内;在内质网内也检测到酸性磷酸酶活性。此外,在萌发早期的部分子叶细胞的质膜外侧及其细胞壁基质中可见密集的酸性磷酸酶活性;而且在近质膜的胞质中常见到一些富含磷酸铅沉淀的胞质小泡,似与质膜融合  相似文献   

14.
杜仲(EucommiaulmoidesOliv.)次生木质部分化过程中,在形成层刚衍生的木薄壁细胞中,酸性磷酸酶(APase)主要分布于核膜边缘和高尔基体;在分化程度较高的木薄壁细胞中,APase散布于整个核中,进而,在各种细胞器残体上聚集;在成熟的木薄壁细胞中,APase沿细胞壁内侧分布。在未成熟导管分子中,核、质膜及纹孔上明显存在APase聚集,进而,核解体;在即将分化成熟的导管分子中,APase主要集中于初生壁;在已分化成熟的导管分子中,APase集中于次生壁。脱分化过程中,只在细胞质中可见分散的APase活性,而细胞核和细胞壁上未见此酶的分布;更深层的即将分化成熟和已分化成熟的导管分子,未见有细胞分裂,其上APase的分布与剥皮前相同。通过比较分化和脱分化过程中APase的分布,推测不同的APase同工酶可能分别参与了次生木质部细胞程序性死亡过程中原生质体的解体和次生壁的建成。APase的聚集程度可能是决定细胞能否脱分化的一个重要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号