首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.2–97.4% 16S rRNA gene similarity to Methylomonas type strains. Comparison of chemotaxonomic and physiological properties further suggested that strain EMGL16-1 was taxonomically distinct from other species in the genus Methylomonas. The isolate was versatile in utilizing nitrogen sources such as molecular nitrogen, nitrate, nitrite, urea, and ammonium. The genes coding for subunit of the particulate form methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), and methanol dehydrogenase (mxaF) were detected in strain EMGL16-1. Phylogenetic analysis of mmoX indicated that mmoX of strain EMGL16-1 is distinct from those of other strains in the genus Methylomonas. This isolate probably represents a novel species in the genus. Our study provides new insights into the diversity of species in the genus Methylomonas and their environmental adaptations.  相似文献   

3.
4.
Numeric abundance, identity, and pH preferences of methanotrophic Gammaproteobacteria (type I methanotrophs) inhabiting the northern acidic wetlands were studied. The rates of methane oxidation by peat samples from six wetlands of European Northern Russia (pH 3.9–4.7) varied from 0.04 to 0.60 μg CH4 g?1 peat h?1. The number of cells revealed by hybridization with fluorochrome labeled probes M84 + M705 specific for type I methanotrophs was 0.05–2.16 × 105 cells g?1 dry peat, i.e., 0.4–12.5% of the total number of methanotrophs and 0.004–0.39% of the total number of bacteria. Analysis of the fragments of the pmoA gene encoding particulate methane monooxygenase revealed predominance of the genus Methylocystis (92% of the clones) in the studied sample of acidic peat, while the proportion of the pmoA sequences of type I methanotrophs was insignificant (8%). PCR amplification of the 16S rRNA gene fragments of type I methanotrophs with TypeIF-Type IR primers had low specificity, since only three sequences out of 53 analyzed belonged to methanotrophs and exhibited 93–99% similarity to those of Methylovulum, Methylomonas, and Methylobacter species. Isolates of type I methanotrophs obtained from peat (strains SH10 and 83A5) were identified as members of the species Methylomonas paludis and Methylovulum miyakonense, respectively. Only Methylomonas paludis SH10 was capable of growth in acidic media (pH range for growth 3.8–7.2 with the optimum at pH 5.8–6.2), while Methylovulum miyakonense 83A5 exhibited the typical growth characteristics of neutrophilic methanotrophs (pH range for growth 5.5–8.0 with the optimum at pH 6.5–7.5).  相似文献   

5.
Culture is considered the definitive technique for Johne's disease diagnosis, and it is essential for later applications of certain molecular typing techniques. In this study, we have tested four solid media (Herrold's egg yolk medium [HEYM] with sodium pyruvate and mycobactin [HEYMm-SP], HEYM with mycobactin and without sodium pyruvate [HEYMm], Middlebrook 7H11 with mycobactin [Mm], and Löwenstein-Jensen with mycobactin [LJm]) for isolation of Mycobacterium avium subsp. paratuberculosis strains in 319 tissue samples from cattle herds and goat flocks. We have shown that each of the two main groups of M. avium subsp. paratuberculosis (type II and type I/III) has different requirements for growth in the culture media studied. The recommended solid media for isolation of type I/III strains are LJm and Mm, since the combination of both media allowed the recovery of all these strains. The most widespread culture medium, HEYM, is not suitable for the isolation of this group of M. avium subsp. paratuberculosis strains. Regarding the type II strains, HEYMm-SP was the medium where more strains were isolated, but the other three media are also needed in order to recover all type II strains. The incubation period is also related to the strain type. In conclusion, because the type of strain cannot be known in advance of culture, coupled with the fact that cattle and goats can be infected with both groups of strains, we recommend the use of the four solid media and the prolongation of the incubation period to more than 6 months to detect paratuberculous herds/flocks and to determine the true prevalence of the infection.  相似文献   

6.
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments.  相似文献   

7.
In a medium containing ammonia, proteose peptone, and cysteine as nitrogen sources, 17 of 24 Bacteroidaceae strains, 3 of Selenomonas strains, 1 of 7 curved rods, 3 of 7 Spirochaetaceae strains, 8 of 20 Eubacterium strains, 8 of 13 Peptococcaceae strains, 3 of 4 Clostridium strains, 19 of 20 Enterobacteriaceae strains, and 1 of 8 Streptococcus strains utilized ammonia nitrogen preferentially to proteose peptone nitrogen. To determine the ability of intestinal microbes to synthesize amino acids from ammonia, ammonia utilization by Bacteroides ruminicola strain 9 was studied in defined media containing ammonia and other nitrogen sources. In another medium containing ammonia, proteose peptone, and cysteine as nitrogen sources, ammonia was preferentially utilized even when the proteose peptone nitrogen content was eight times greater than that of ammonia nitrogen. In a medium containing ammonia, an amino acid, and cysteine, the lowest uptake of ammonia nitrogen was observed when the medium contained aspartic acid, glutamic acid, threonine, or alanine; but ammonia was utilized more effectively than any of the amino acids. Incorporation of 15N from [15N]ammonia into bacterial amino acids was studied. 15N was incorporated into every amino acid of B. ruminicola strain 9, and the highest uptake was observed in aspartic acid and alanine.  相似文献   

8.
Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes.  相似文献   

9.
This communication describes the isolation and characterization of mutants of Rhizobium trifolii which can induce nitrogenase activity in defined liquid medium. Two procedures were used for the isolation of these mutants from R. trifolii strain DT-6: (1) following chemical mutagenesis, slow growin mutants were selected which were unable to utilize NH4+ as sole source of nitrogen; (2) as spontaneous mutants resistant to the glutamate analogue L-methionine-DL-sulfoximine.Mutants (DT-71, DT-125) isolated by these procedures induced nitrogenase activity in the free-living state, whereas the parent strain lacked this property. Induction of nitrogenase activity in these mutants occurred during the late exponential phase of growth when the rate of protein synthesis was decreasing. The addition of NH4+ to a medium containing glutamate as the nitrogen-source resulted in a 50–70% reduction (repression?) of nitrogenase activity; in contrast, the rate of protein synthesis or the rate of respiration was not influenced by exogenous NH4+.Biochemistry analysis showed that these mutants (strains DT-71 and DT-125) have defects in both nitrogen and carbon metabolism. The levels of glutamate synthase (both NADP+-and NAD+-dependent activities) and glutamate dehydrogenase (NAD+-dependent activity) were markedly lower. In addition, the mutants were found to have no detectable ribitol dehydrogenase or β-galactosidase activity. These findings are discussed in relation to a mechanism of regulation of symbiotic nitrogen fixation.  相似文献   

10.
The mutualistic interactions in a 4-aminobenzenesulfonate (sulfanilate) degrading mixed bacterial culture were studied. This coculture consisted of Hydrogenophaga palleronii strain S1 and Agrobacterium radiobacter strain S2. In this coculture only strain S1 desaminated sulfanilate to catechol-4-sulfonate, which did not accumulate in the medium but served as growth substrate for strain S2. During growth in batch culture with sulfanilate as sole source of carbon, energy, nitrogen and sulfur, the relative cell numbers (colony forming units) of both strains were almost constant. None of the strains reached a cell number which was more than threefold higher than the cell number of the second strain. A mineral medium with sulfanilate was inoculated with different relative cell numbers of both strains (relative number of colony forming units S1:S2 2200:1 to 1:500). In all cases, growth was found and the proportion of both strains moved towards an about equal value of about 3:1 (strain S1:strain S2). In contrast to the coculture, strain S1 did not grow in a mineral medium in axenic culture with 4-aminobenzenesulfonate or any other simple organic compound tested. A sterile culture supernatant from strain S2 enabled strain S1 to grow with 4-aminobenzenesulfonate. The same growth promoting effect was found after the addition of a combination of 4-aminobenzoate, biotin and vitamin B12. Strain S1 grew with 4-aminobenzenesulfonate plus the three vitamins with about the same growth rate as the mixed culture in a mineral medium. When (resting) cells of strain S1 were incubated in a pure mineral medium with sulfanilate, up to 30% of the oxidized sulfanilate accumulated as catechol-4-sulfonate in the culture medium. In contrast, only minor amounts of catechol-4-sulfonate accumulated when strain S1 was grown with 4ABS in the presence of the vitamins.  相似文献   

11.
Hydantoin-hydrolyzing enzymes of Agrobacterium tumefaciens isolates such as strain RU-OR are used as biocatalysts in the commercial production of d-hydroxyphenylglycine via hydrolysis of d, l-p-hydroxyphenylhydantoin. Hydantoin-hydrolyzing enzyme activity in RU-OR cells is tightly regulated by nitrogen catabolite repression and is induced when hydantoin or a hydantoin-analogue is present in the growth medium. Previous studies have selected mutant strains which are inducer-independent and no longer subject to nitrogen catabolite expression. However, these mutants did not exhibit significantly higher levels of enzyme activity compared to the wild-type strain. In this study, we have focused on enhancing the levels of hydantoinase and N-carbamoylase activity in wild-type RU-OR cells by manipulating the growth medium or over-expressing the global nitrogen regulatory factors, NtrBC. We also show that this strain encodes two distinct d-selective N-carbamoylases. One enzyme is virtually identical to the other Agrobacterium N-carbamoylases while the second represents a new class of d-N-carbamoylases with potentially novel biocatalytic properties.  相似文献   

12.
通过对红托竹荪快速分离培养基优化,提高红托竹荪菌种分离与评价效率。采用响应面分析法,以菌种生长速度为响应值拟合二次多元回归方程,确定培养基配方;测定优化培养基与PDA对照培养基菌丝生长速度和菌丝直径,以菌丝形态、锁状联合和菌落形态等指标评价优化培养基;测定优化培养基与PDA培养基培养菌丝在木屑培养基中菌丝生长速度,验证应用效果。通过试验,筛选出快速分离培养基配方为葡萄糖20.71 g/L、全麦粉8.36 g/L、玉米粉8.07 g/L、琼脂粉18.00 g/L、木屑水1.06 L。快速分离培养基与PDA培养基对比,培养的菌落直径平均增加66.25%,快速分离培养基菌丝日平均生长速度增加33.33%,木屑培养基菌丝日平均生长速度增加44.22%。由于优化培养基中含有淀粉、纤维素等有效成分,其刺激了菌种分泌淀粉酶、纤维素酶等,维持了胞外酶系的完整性。还可根据菌丝培养基过程形成的透明圈大小判定菌种胞外酶产生能力,达到快速评价菌种质量,保障菌种质量的目的。  相似文献   

13.
The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.  相似文献   

14.
In experiments investigating nutrient effects on tropical Microcystis, increasing nitrogen and phosphorus concentrations were found to have a significant positive effect on maximum cell yields of two strains of Microcystis ichthyoblabe (from Lower Peirce and Tengeh Reservoirs) and one strain of Microcystis flos-aquae isolated (Lower Peirce Reservoir) from Singapore. However, only increasing nitrogen concentration had a positive effect on growth rates of M. ichthyoblabe and M. flos-aquae from Lower Peirce Reservoir. MC-RR and MC-LR were produced by all three strains with MC-RR being the dominant variant. Phosphorus played an important role in MC production with increases in phosphorus from medium to high concentrations leading to decreases in MC-RR cell quotas for all three strains at the two highest nitrogen levels tested. The different growth and toxin production responses between M. ichthyoblabe strains could be due to location-specific differences.  相似文献   

15.
Astaxanthin has been widely used as a feed supplement in poultry and aquaculture industries. One challenge for astaxanthin production in bacteria is the low percentage of astaxanthin in the total carotenoids. An obligate methanotrophic bacterium Methylomonas sp. 16a was engineered to produce astaxanthin. Astaxanthin production appeared to be dramatically affected by oxygen availability. We examined whether astaxanthin production in Methylomonas could be improved by metabolic engineering through expression of bacterial hemoglobins. Three hemoglobin genes were identified in the genome of Methylomonas sp. 16a. Two of them, thbN1 and thbN2, belong to the family of group I truncated hemoglobins. The third one, thbO, belongs to the group II truncated hemoglobins. Heterologous expression of the truncated hemoglobins in Escherichia coli improved cell growth under microaerobic conditions by increasing final cell densities. Co-expression of the hemoglobin genes along with the crtWZ genes encoding astaxanthin synthesis enzymes in Methylomonas showed higher astaxanthin production than expression of the crtWZ genes alone on multicopy plasmids. The hemoglobins likely improved the activity of the oxygen-requiring CrtWZ enzymes for astaxanthin conversion. A plasmid-free production strain was constructed by integrating the thbN1–crtWZ cassette into the chromosome of an astaxanthin-producing Methylomonas strain. It showed higher astaxanthin production than the parent strain.  相似文献   

16.
The genus Methylomonas accommodates strictly aerobic, obligate methanotrophs, with their sole carbon and energy sources restricted to methane and methanol. These bacteria inhabit oxic-anoxic interfaces of various freshwater habitats and have attracted considerable attention as potential producers of a single-cell protein. Here, we characterize two fast-growing representatives of this genus, strains 12 and MP1T, which are phylogenetically distinct from the currently described Methylomonas species (94.0–97.3 % 16S rRNA gene sequence similarity). Strains 12 and MP1T were isolated from freshwater sediments collected in Moscow and Krasnodar regions, respectively. Cells of these strains are Gram-negative, red-pigmented, highly motile thick rods that contain a type I intracytoplasmic membrane system and possess a particulate methane monooxygenase (pMMO) enzyme. These bacteria grow between 8 and 45 °C (optimum 35 °C) in a relatively narrow pH range of 5.5–7.3 (optimum pH 6.6–7.2). Major carotenoids synthesized by these methanotrophs are 4,4′-diaplycopene-4,4′-dioic acid, 1,1′-dihydroxy-3,4-didehydrolycopene and 4,4′-diaplycopenoic acid. High biomass yield, of up to 3.26 g CDW/l, is obtained during continuous cultivation of MP1T on natural gas in a bioreactor at a dilution rate of 0.22 h?1. The complete genome sequence of strain MP1T is 4.59 Mb in size; the DNA G + C content is 52.8 mol%. The genome encodes four rRNA operons, one pMMO operon and 4,216 proteins. The genome sequence displays 82–85 % average nucleotide identity to those of earlier described Methylomonas species. We propose to classify these bacteria as representing a novel species of the genus Methylomonas, M. rapida sp. nov., with the type strain MP1T (=KCTC 92586T = VKM B-3663T).  相似文献   

17.
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.  相似文献   

18.
AIMS: The overall growth kinetics of four potentially probiotic strains (Lactobacillus fermentum, Lact. reuteri, Lact. acidophilus and Lact. plantarum) cultured in malt, barley and wheat media were investigated. The objectives were to identify the main factors influencing the growth and metabolic activity of each strain in association with the cereal substrate. METHODS AND RESULTS: All fermentations were performed without pH control. A logistic-type equation, which included a growth inhibition term, was used to describe the experimental data. In the malt medium, all strains attained high maximum cell populations (8.10-10.11 log10 cfu ml(-1), depending on the strain), probably due to the availability of maltose, sucrose, glucose, fructose (approx. 15 g l(-1) total fermentable sugars) and free amino nitrogen (approx. 80 mg l(-1)). The consumption of sugars during the exponential phase (10-12 h) resulted in the accumulation of lactic acid (1.06-1.99 g l(-1)) and acetic acid (0.29-0.59 g l(-1)), which progressively decreased the pH of the medium. Each strain demonstrated a specific preference for one or more sugars. Since small amounts of sugars were consumed by the end of the exponential phase (17-43%), the decisive growth-limiting factor was probably the pH, which at that time ranged between 3.40 and 3.77 for all of the strains. Analysis of the metabolic products confirmed the heterofermentative or homofermentative nature of the strains used, except in the case of Lact. acidophilus which demonstrated a shift towards the heterofermentative pathway. All strains produced acetic acid during the exponential phase, which could be attributed to the presence of oxygen. Lactobacillus plantarum, Lact. reuteri and Lact. fermentum continued to consume the remaining sugars and accumulate metabolic products in the medium, probably due to energy requirements for cell viability, while Lact. acidophilus entered directly into the decline phase. In the barley and wheat media all strains, especially Lact. acidophilus and Lact. reuteri, attained lower maximum cell populations (7.20-9.43 log10 cfu ml(-1)) than in the malt medium. This could be attributed to the low sugar content (3-4 g l(-1) total fermentable sugar for each medium) and the low free amino nitrogen concentration (15.3-26.6 mg l(-1)). In all fermentations, the microbial growth ceased at pH values (3.73-4.88, depending on the strain) lower than those observed for malt fermentations, which suggests that substrate deficiency in sugars and free amino nitrogen contributed to growth limitation. CONCLUSIONS: The malt medium supported the growth of all strains more than barley and wheat media due to its chemical composition, while Lact. plantarum and Lact. fermentum appeared to be less fastidious and more resistant to acidic conditions than Lact. acidophilus and Lact. reuteri. SIGNIFICANCE AND IMPACT OF THE STUDY: Cereals are suitable substrates for the growth of potentially probiotic lactic acid bacteria.  相似文献   

19.
Five strains of heterocystous blue-green algae capable of high rates of growth and nitrogenase activity were isolated from shallow coastal environments. Growth of the organisms was characterized with respect to temperature, NaCl concentration in the medium, and nitrogen source. The temperature optima ranged from 35–42°C, and all but one of the strains displayed a requirement for added NaCl. The generation times under N2-fixing conditions were 5.1–5.9 h, and were as low as 3.4 h for growth on NH4Cl. Nitrogenase activity (C2H2 reduction) was high throughout the logarithmic growth phase of each strain. The maximum value observed for one strain was 65.5 nmoles C2H4 produced/mg protein x min, and the average values for the five strains ranged from 24.5–46.7 nmoles C2H4/mg protein x min. The organisms all belong to the genusAnabaena. The growth and nitrogenase activity of these strains are much higher than those of the heterocystous blue-green algae commonly used for investigation of nitrogen metabolism, and they thus should prove to be useful physiological tools. Their prevalence, as judged by the ease of their enrichment and isolation, in bay and estuarine environments suggests that they are important contributors of combined nitrogen.  相似文献   

20.
Existing media designed for selective isolation of clinically important members of the genus Yersinia were found to be unsatisfactory for the growth and isolation of Yersinia pestis. We report the development of a new selective agar medium (termed BIN) that supports the growth of Y. pestis. The development of the formulation of this medium was based on a fluorescence screening system designed for monitoring bacterial growth on semisolid media, using a green fluorescent protein-expressing strain. High-throughput combinatorial experiments can be conducted for the quantitative evaluation of the effect of different medium components on growth. Generation of fluorescence plots in this system, using microplates, allowed the quantitative evaluation of the growth rate of Y. pestis EV76 cultures in different agar compositions. The final BIN formulation is based on brain heart infusion agar, to which the selective agents irgasan, cholate salts, crystal violet, and nystatin were introduced. It was found that BIN agar is more efficient in supporting colony formation and recovery of Y. pestis than are the conventional semisolid media MacConkey agar and Yersinia-selective agar (cefsulodin-irgasan-novobiocin agar). The advantage of BIN over other media has been also demonstrated in recovering virulent Y. pestis from the mixed bacterial populations found in decaying carcasses of infected mice. The BIN medium is suggested as a selective medium for isolation and recovery of Y. pestis from various backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号