首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.  相似文献   

2.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis, and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed the remoteness of nifH gene sequences of methanotroph types I and II. At the same time, a close relationship was found between nifH of type I methanotrophs and representatives of -proteobacteria and between nifH genes of type II methanotrophs and representatives of -proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception being Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

3.
Biological nitrogen fixation (BNF) is one of the major nitrogen inputs into the biosphere, and the nitrogenase iron protein (nifH) gene plays important roles in regulating the molecular nitrogen (N2) fixation process. The nifH gene has also been extensively used to study the diversity and function of nitrogen-fixing microorganisms. In this study, we investigated the diversity of the nifH gene by culture-independent methods to analysis the planktonic nitrogen-fixing organisms in Lake Donghu, Wuhan, the largest urban lake in China. Results indicate that nifH gene sequences cloned from planktonic-community DNA showed high similarity to the uncultured cyanobacterial sequences deposited in the GenBank database. Phylogenetic analysis on the basis of the translated amino acid sequences further showed that most nifH clones were closely related to the reported cyanobacterial nifH gene sequences. Results also indicate that there are similar planktonic nitrogen-fixing organisms in the relatively independent areas of Lake Donghu, even though different regions showed a wide gradient in trophic status. These and other observations led us to believe that studies on nifH gene diversity and expression will increase our ability to understand the ecological function of target nitrogen-fixing groups in aquatic ecosystems.  相似文献   

4.
Wood-feeding termites live on cellulolytic materials that typically lack of nitrogen sources. It was reported that symbiotic microbes play important roles in the maintenance of a normal nitrogen contents in termite by different metabolisms including nitrogen fixation. In this study, the diversity of nitrogen-fixing organisms in the symbiotic intestinal microflora of Reticulitermes chinensis Snyder was investigated with culture independent method. Fragments of the nifH genes, which encode dinitrogenase reductase, were directly amplified from the DNA of the mixed microbial population in the termite gut with four sets of primers corresponding to the conserved regions of the genes. Clones were randomly selected and analyzed by RFLP. Sequence analysis revealed that a large number of nifH sequences retrieved from the termite gut were most closely related to strict anaerobic bacteria such as clostridia and spirochetes, some of the others were affiliated with proteobacteria, bacteroides, or methanogenic archaea. The results showed that there was a remarkable diversity of nitrogenase genes in the gut of Reticulitermes chinensis Snyder.  相似文献   

5.
Profiles of dissolved O(2) and methane with increasing depth were generated for Lake Washington sediment, which suggested the zone of methane oxidation is limited to the top 0.8 cm of the sediment. Methane oxidation potentials were measured for 0.5-cm layers down to 1.5 cm and found to be relatively constant at 270 to 350 micromol/liter of sediment/h. Approximately 65% of the methane was oxidized to cell material or metabolites, a signature suggestive of type I methanotrophs. Eleven methanotroph strains were isolated from the lake sediment and analyzed. Five of these strains classed as type I, while six were classed as type II strains by 16S rRNA gene sequence analysis. Southern hybridization analysis with oligonucleotide probes detected, on average, one to two copies of pmoA and one to three copies of 16S rRNA genes. Only one restriction length polymorphism pattern was shown for pmoA genes in each isolate, and in cases where, sequencing was done, the pmoA copies were found to be almost identical. PCR primers were developed for mmoX which amplified 1.2-kb regions from all six strains that tested positive for cytoplasmic soluble methane mono-oxygenase (sMMO) activity. Phylogenetic analysis of the translated PCR products with published mmoX sequences showed that MmoX falls into two distinct clusters, one containing the orthologs from type I strains and another containing the orthologs from type II strains. The presence of sMMO-containing Methylomonas strains in a pristine freshwater lake environment suggests that these methanotrophs are more widespread than has been previously thought.  相似文献   

6.
Periphyton mats are an important component of many wetland ecosystems, performing a range of vital ecosystem functions, including nitrogen fixation. The composition and integrity of these mats are affected by nutrient additions, which might result in changes in their function. The overall objective of this study was to investigate the distribution of nifH sequences in floating periphyton mats collected along a nutrient gradient in the Florida Everglades. Distribution of nifH clone libraries indicated nutrient enrichment selected primarily for sequences branching deeply within the heterocystous cyanobacteria and within a novel group of cyanobacteria; sequences from low-nutrient sites were broadly distributed, with no clear dominance of sequences associated with heterocystous and nonheterocystous cyanobacteria and alpha-, gamma-, and delta-proteobacteria. The dominance of heterocystous cyanobacteria in nutrient-enriched sites and the lack of clear dominance by heterocystous cyanobacteria is consistent with previously reported diurnal cycles of nitrogen fixation rates in these systems. Sequences clustering with those harbored by methanotrophs were also identified; sequences from nutrient-impacted and transition regions clustered with those characteristic of type II methanotrophs, and sequences from oligotrophic regions clustered with type I methanotrophs.  相似文献   

7.
Three stable methane-oxidizing enrichment cultures, SB26, SB31, and SB31A, were analyzed by transmission electron microscopy and by serological and molecular techniques. Electron microscopy revealed the presence of both type I and type II methanotrophs in SB31 and SB31A enrichments; only type II methanotrophs were found in SB26 enrichment. Methylosinus trichosporium was detected in all three enrichments by the application of species-specific antibodies. Additionally, Methylocystis echinoides was found in SB26 culture; Methylococcus capsulatus, in SB31 and SB31A; and Methylomonas methanica, in SB31. The analysis with pmoA and nifH gene sequences as phylogenetic markers revealed the presence of Methylosinus/Methylocystis group in all communities. Moreover, the analysis of pmoA sequences revealed the presence of Methylomonas in SB31. Methylocella was detected in SB31 and SB31A enrichments only by nifH analysis. It was concluded that the simultaneous application of different approaches reveals more reliable information on the diversity of methanotrophs.  相似文献   

8.
The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gene clusters of the group II and group X methanotrophs. The phylogenetic analysis of the predicted amino acid sequences of sMMO demonstrated that the sMMOs from these strains were closer to that from M. capsulatus Bath in the group X methanotrophs than to those from Methylosinus trichosporium OB3b and Methylocystis sp. strain M in the group II methanotrophs. Based on the sequence data of sMMO genes of our strains and other methanotrophs, we designed a new PCR primer to amplify sMMO gene fragments of all the known methanotrophs harboring the mmoX gene. The primer set was successfully used for detecting methanotrophs in the groundwater of trichloroethylene-contaminated sites during in situ-biostimulation treatments.  相似文献   

9.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed remoteness of nifH genes sequences of methanotroph types I and II. At the same time, close relationship was found between nifH of type I methanotrophs and representatives of gamma-proteobacteria and between nifH genes of type II methanotrophs and representatives of alpha-proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception of Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

10.
The diversity of nitrogen-fixing microorganisms in the soil of an oligotrophic Sphagnum peat bog was studied by molecular cloning of fragments of the nifH gene encoding one of the main components of the nitrogenase complex. The fragments were amplified from the DNA isolated from the peat samples collected at the same site in January (library I) and November (library II), 2005. Analysis of the nifH sequence libraries revealed high diversity of diazotrophic bacteria in peat soil: the first library consisted of 237 clones and 55 unique sequence types, the second one included 171 clones and 52 sequence types. Comparison of the two clone libraries showed that the composition and population structure of the nitrogen-fixing community depended greatly on the sampling time; they shared only 11 phylotypes. The sequences of representatives of the class Alphaproteobacteria prevailed in both libraries (27% and 57% of clones in libraries I and II, respectively). Representatives of the classes Deltaproteobacteria and Chlorobea were minor components of library I (6% and 7% of clones, respectively), whereas they prevailed in library II (18% and 24% of clones, respectively). Members of the class Chloroflexi were present only in library I, while members of the classes Bacilli, Clostridia, and Methanomicrobia were present only in library II. Our studies demonstrated that, for complete evaluation of the diversity of natural nitrogen-fixing communities, nifH libraries should consist of at least 200–300 clones.  相似文献   

11.
Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska''s interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.  相似文献   

12.
All Paenibacillus 16S rDNA sequences, except for that of Paenibacillus massiliensis T7, formed a coherent cluster, distinct from gram-positive nitrogen-fixing Clostridium pasteurianum and Heliobacterium chlorum. All Paenibacillus NifH sequences formed two main clusters. Cluster I encompassing the NifH sequences from most of members of Paenibacillus spp., such as Paenibacillus azotofixans NifH1 and NifH2, Paenibacillus polymyxa and Paenibacillus macerans. Cluster II including only P. azotofixans NifH3. Curiously, three copies of nifH genes of Paenibacillus sabine T27 clustered within P. azotofixans cluster I (NifH1 and NifH2). The effect of O2 and ammonium on nitrogenase activity was studied with 14 different nitrogenfixing Paenibacillus strains. The optimal oxygen concentration level for all Paenibacillus strains is in the 0 to 0.05% range, similar to that for Klebsiella pneumoniae. In all Paenibacillus strains, the highest nitrogenase activity is obtained in the condition of 0?C0.1 mM NH4Cl and the increase of NH4Cl from 0.1 to 5 mM caused a rapid inhibition of nitrogenase activity. However, the inhibition was reversible in the presence of 200 mM NH4Cl in some Paenibacillus strains. It is the first time to use almost all of the recognized nitrogen-fixing Paenibacilus spp. to investigate the phylogeny of 16S rRNA and nifH genes. The data that the inhibition of O2 and ammonium on nitrogenase acitivity will provide a base for studying the molecular regulatory mechanism of nitrogen fixation in the genus Paenibacillus.  相似文献   

13.
Molecular diversity of deep-sea hydrothermal vent aerobic methanotrophs was studied using both 16S ribosomalDNA and pmoA encoding the subunit A of particulate methane monooxygenase (pMOA). Hydrothermal vent plume and chimney samples were collected from back-arc vent at Mid-Okinawa Trough (MOT), Japan, and the Trans-Atlantic Geotraverse (TAG) site along Mid-Atlantic Ridge, respectively. The target genes were amplified by polymerase chain reaction from the bulk DNA using specific primers and cloned. Fifty clones from each clone library were directly sequenced. The 16S rDNA sequences were grouped into 3 operational taxonomic units (OTUs), 2 from MOT and 1 from TAG. Two OTUs (1 MOT and 1 TAG) were located within the branch of type I methanotrophic ?-Proteobacteria. Another MOT OTU formed a unique phylogenetic lineage related to type I methanotrophs. Direct sequencing of 50 clones each from the MOT and TAG samples yielded 17 and 4 operational pmoA units (OPUs), respectively. The phylogenetic tree based on the pMOA amino acid sequences deduced from OPUs formed diverse phylogenetic lineages within the branch of type I methanotrophs, except for the OPU MOT-pmoA-8 related to type X methanotrophs. The deduced pMOA topologies were similar to those of all known pMOA, which may suggest that the pmoA gene is conserved through evolution. Neither the 16S rDNA nor pmoA molecular analysis could detect type II methanotrophs, which suggests the absence of type II methanotrophs in the collected vent samples.  相似文献   

14.
The diversity of dinitrogenase reductase gene (nifH) fragments in Paenibacillus azotofixans strains was investigated by using molecular methods. The partial nifH gene sequences of eight P. azotofixans strains, as well as one strain each of the close relatives Paenibacillus durum, Paenibacillus polymyxa, and Paenibacillus macerans, were amplified by PCR by using degenerate primers and were characterized by DNA sequencing. We found that there are two nifH sequence clusters, designated clusters I and II, in P. azotofixans. The data further indicated that there was sequence divergence among the nifH genes of P. azotofixans strains at the DNA level. However, the gene products were more conserved at the protein level. Phylogenetic analysis showed that all nifH cluster II sequences were similar to the alternative (anf) nitrogenase sequence. A nested PCR assay for the detection of nifH (cluster I) of P. azotofixans was developed by using the degenerate primers as outer primers and two specific primers, designed on the basis of the sequence information obtained, as inner primers. The specificity of the inner primers was tested with several diazotrophic bacteria, and PCR revealed that these primers are specific for the P. azotofixans nifH gene. A GC clamp was attached to one inner primer, and a denaturing gradient gel electrophoresis (DGGE) protocol was developed to study the genetic diversity of this region of nifH in P. azotofixans strains, as well as in soil and rhizosphere samples. The results revealed sequence heterogeneity among different nifH genes. Moreover, nifH is probably a multicopy gene in P. azotofixans. Both similarities and differences were detected in the P. azotofixans nifH DGGE profiles generated with soil and rhizosphere DNAs. The DGGE assay developed here is reproducible and provides a rapid way to assess the intraspecific genetic diversity of an important functional gene in pure cultures, as well as in environmental samples.  相似文献   

15.
Soda lakes are an environment with an unusually high pH and often high salinity. To identify the active methanotrophs in the Soda lake sediments, sediment slurries were incubated with a 10% (v/v) (13)CH(4) headspace and the (13)C-labelled DNA was subsequently extracted from these sediments following CsCl density gradient centrifugation. This DNA was then used as a template for PCR amplification of 16S rRNA genes and genes encoding PmoA and MmoX of methane monooxygenase, key enzymes in the methane oxidation pathway. Phylogenetic analysis of 16S rRNA genes, PmoA and MmoX identified that strains of Methylomicrobium, Methylobacter, Methylomonas and 'Methylothermus' had assimilated the (13)CH(4). Phylogenetic analysis of PmoA sequences amplified from DNA extracted from Soda lake sediments before Stable Isotope Probing (SIP) treatment showed that a much wider diversity of both type I and type II methanotroph sequences are present in this alkaline environment. The majority of methanotroph sequences detected in the (13)C-DNA studies were from type I methanotrophs, with 50% of 16S rRNA clones and 100% of pmoA clones from both Lake Suduntuiskii Torom and Lake Gorbunka suggesting that the type I methanotrophs are probably responsible for the majority of methane oxidation in this environment.  相似文献   

16.
Biological nitrogen fixation is the primary source of new N in terrestrial arctic ecosystems and is fundamental to the long-term productivity of arctic plant communities. Still, relatively little is known about the nitrogen-fixing microbes that inhabit the soils of many dominant vegetation types. Our objective was to determine which diazotrophs are associated with three common, woody, perennial plants in an arctic glacial lowland. Dryas integrifolia, Salix arctica, and Cassiope tetragona plants in soil were collected at Alexandra Fiord, Ellesmere Island, Canada. DNA was extracted from soil and root samples and a 383-bp fragment of the nifH gene amplified by the polymerase chain reaction. Cloned genotypes were screened for similarity by restriction fragment length polymorphism (RFLP) analysis. Nine primary RFLP phylotypes were identified and 42 representative genotypes selected for sequencing. Majority of sequences (33) were type I nitrogenases, whereas the remaining sequences belonged to the divergent, homologous, type IV group. Within the type I nitrogenases, nifH genes from posited members of the Firmicutes were most abundant, and occurred in root and soil samples from all three plant species. nifH genes from posited Pseudomonads were found to be more closely associated with C. tetragona, whereas nifH genes from putative alpha-Proteobacteria were more commonly associated with D. integrifolia and S. arctica. In addition, 12 clones likely representing a unique clade within the type I nitrogenases were identified. To our knowledge, this study is the first to report on the nifH diversity of arctic plant-associated soil microbes.  相似文献   

17.
Nitrogen fixation genes (nifH) were amplified and sequenced from DNA extracted from surface water samples collected from six stations along the length of the Neuse River Estuary, North Carolina, in order to determine the distribution of nitrogen-fixing organisms in the transition from fresh-to saltwater. Nitrogenase genes were detected in all samples by a nested polymerase chain reaction method, and the amplification products from the upriver, midriver, and downriver stations were cloned, sequenced, and used for phylogenetic analysis. The composition of nifH clone libraries from upriver, midriver, and downriver stations (each composed of 14 randomly selected clones) were very diverse (samples from upriver and midriver stations were composed of 14 unique sequences, downriver station composed of 7 unique sequences) and differed among the stations. Some phylotypes were found at more than one station, but were usually found in the upriver and midriver stations or in the midriver and downriver stations, indicating that the phylotypes were probably transported along the river. Cyanobacterial nifH were not found at the most upriver site, but were a large fraction of sequences (50%) recovered from the downriver station, where nitrate concentration was an order of magnitude lower and salinity was higher. In contrast, γ proteobacteria nifH sequences were much more common at the midriver and upriver sites (58% and 64%, respectively), compared to the downriver site (14%). Results indicate that substantially different nitrogen-fixing assemblages are present along the river, reflecting differential watershed hydrological inputs, sedimentation, and environmental selection pressures, along the salinity gradient.  相似文献   

18.
We investigated the diversity of nitrogenase genes in the alkaline, moderately hypersaline Mono Lake, California to determine (1) whether nitrogen-fixing (diazotrophic) populations were similar to those in other aquatic environments and (2) if there was a pattern of distribution of phylotypes that reflected redox conditions, as well as (3) to identify populations that could be important in N dynamics in this nitrogen-limited lake. Mono Lake has been meromictic for almost a decade and has steep gradients in oxygen and reduced compounds that provide a wide range of aerobic and anaerobic habitats. We amplified a fragment of the nitrogenase gene (nifH) from planktonic DNA samples collected at three depths representing oxygenated surface waters, the oxycline, and anoxic, ammonium-rich deep waters. Forty-three percent of the 90 sequences grouped in nifH Cluster I. The majority of clones (57%) grouped in Cluster III, which contains many known anaerobic bacteria. Cluster I and Cluster III sequences were retrieved at every depth indicating little vertical zonation in sequence types related to the prominent gradients in oxygen and ammonia. One group in Cluster I was found most often at every depth and accounted for 29% of all the clones. These sequences formed a subcluster that contained other environmental clones, but no cultivated representatives. No significant nitrogen fixation was detected by the 15N2 method after 48 h of incubation of surface, oxycline, or deep waters, suggesting that pelagic diazotrophs were contributing little to nitrogen fluxes in the lake. The failure to measure any significant nitrogen fixation, despite the detection of diverse and novel nitrogenase genes throughout the water column, raises interesting questions about the ecological controls on diazotrophy in Mono Lake and the distribution of functional genes in the environment.  相似文献   

19.
The Amazonian catfish, Panaque nigrolineatus, consume large amounts of wood in their diets. The nitrogen-fixing community within the gastrointestinal (GI) tract of these catfish was found to include nifH phylotypes that are closely related to Clostridium sp., Alpha and Gammaproteobacteria, and sequences associated with GI tracts of lower termites. Fish fed a diet of sterilized palm wood were found to contain nifH messenger RNA within their GI tracts, displaying high sequence similarity to the nitrogen-fixing Bradyrhizobium group. Nitrogenase activity, measured by acetylene reduction assays, could be detected in freshly dissected GI tract material and also from anaerobic enrichment cultures propagated in nitrogen-free enrichment media; nifH sequences retrieved from these cultures were dominated by Klebsiella- and Clostridium-like sequences. Microscopic examination using catalyzed reporter deposition-enhanced immunofluorescence revealed high densities of nitrogenase-containing cells colonizing the woody digesta within the GI tract, as well as cells residing within the intestinal mucous layer. Our findings suggest that the P. nigrolineatus GI tract provides a suitable environment for nitrogen fixation that may facilitate production of reduced nitrogen by the resident microbial population under nitrogen limiting conditions. Whether this community is providing reduced nitrogen to the host in an active or passive manner and whether it is present in a permanent or transient relationship remains to be determined. The intake of a cellulose rich diet and the presence of a suitable environment for nitrogen fixation suggest that the GI tract microbial community may allow a unique trophic niche for P. nigrolineatus among fish.  相似文献   

20.
Nitrogen fixation is an important process in biogeochemical cycles exclusively carried out by prokaryotes, mostly by an evolutionarily conserved nitrogenase protein complex, of which one of the structural genes (nifH) is highly valuable for phylogenetic and diversity analyses. We developed a nifH-based short oligonucleotide microarray (nifH diagnostic microarray) as a rapid tool to effectively monitor nitrogen-fixing diazotrophic populations in a wide range of environments. Taking account of the overwhelming predominance of environmental nifH fragments from uncultivated microorganisms in public databases, our nifH microarray is mainly based on nifH sequences from as yet unidentified prokaryotes. Standard conditions for microarray performance were determined, and criteria for the design of specific oligonucleotides were defined. A primary set of 56 oligonucleotides was validated with fluorescence-labeled single-stranded nifH targets from five reference strains, 26 environmental clones, and artificial mixtures of reference strains. The nifH microarray was applied to analyze the diversity (based on DNA) and activity (based on mRNA) of diazotrophs in roots of wild rice samples from Namibia. Results demonstrated that only a small subset of diazotrophs being present in the sample were actually fixing nitrogen actively. Our data suggest that the developed nifH microarray is a highly reproducible and semiquantitative method for mapping the variability of diazotrophic diversity, allowing rapid comparisons of the relative abundance and activity of diazotrophic prokaryotes in the environment. A further refined nifH microarray comprising of 194 oligonucleotide probes now covers more than 90% of sequences in our nifH database. Electronic Supplementary Material The following supplementary material is available on-line for this article from  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号