首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
以克山病病区粮配成基础饲料,另在基础饲料中分别补充Se或VE,或Se+VE喂养大鼠,在细胞及亚细胞水平上以Ca代谢为主研究并比较了Se和VE在克山病病因中的作用。测量了心肌细胞和心肌线粒体的Ca代谢及有关指标、心肌线粒体能量转换功能及心肌组织自由基含量。结果表明,在低Se病区粮中补充Se或VE均能在一定程度上预防病区粮中致病因素对心肌细胞及线粒体的损伤;并且补充Se或VE均能使心肌组织中自由基含量减少。提示Se和VE是通过清除体内过量自由基预防细胞和线粒体的损伤的。但值得注意的是,实验中所用病区粮VE含量不低于甚至高于非病区对照粮,在低Se情况下,所补VE的量需要相当大(如本实验中补充200μg/g)才能较明显地预防心肌细胞和心肌线粒体的损伤。通过对这些结果的分析,进一步肯定低Se是克山病形成的重要因素之一。  相似文献   

2.
本文以豚鼠和大白鼠心肌肌浆网膜(SR)Ca~(2+)-ATPase的活力,心肌质膜(SL)(Ca~(2+)Mg~(2+))-ATPase的活力和电子显微镜的方法探索克山病病区粮中低硒与心肌细胞钙转运调控的共系,实验结果为硒对克山病有预防作用的观点提供了新的理论依据,并进一步支持了“克山病是一种心肌线粒体病”的观点。  相似文献   

3.
研究抗坏血酸对氯高铁血红素所诱导的红细胞溶血的影响.红细胞溶血采用在540 nm处测定 上清液血红蛋白吸光度的方法;红细胞巴比妥酸反应产物 (TBARS)测定采用Stocks 等建立的方法;高铁血红蛋白的测定采用Sezebeni等报道的方法.结果表明:抗坏血酸显著增强氯高铁血红素所诱导的溶血.尽管氯高铁血红素本身并不影响红细胞TBARS和高铁血红蛋白的水平,但是,氯高铁血红素和抗坏血酸一起诱导红细胞TBARS和高铁血红蛋白含量的增加;过氧化氢酶显著地抑制抗坏血酸增强氯高铁血红素诱导红细胞的溶血、TBARS和高铁血红蛋白的生成;氢氧自由基淬灭剂显著地抑制抗坏血酸增强氯高铁血红素诱导红细胞溶血.由上述可得到如下 结论:抗坏血酸增加氯高铁血红素诱导的红细胞氧化压力与H2O2有关;氢氧自由基可能是抗坏血酸增强氯高铁血红素诱导红细胞溶血的原因;抗坏血酸在氯高铁血红素存在时,可以作为一个亲氧化剂而非一个抗氧化剂.  相似文献   

4.
 本实验用特丁基氢过氧化物(t-BuOOH)分别与缺硒和不缺硒大鼠红细胞在体外作用后,观察了血红蛋白,脂质和膜蛋白的改变情况,并测定了抗氧化酶系的活力,以研究硒对t-BuOOH毒性的保护作用,结果指出:硒缺乏可使细胞抗氧化能力下降,缺乏组所受t-BuOOH的氧化损害大于硒不缺乏组。  相似文献   

5.
用克山病区粮喂养豚鼠证明其红细胞、肝等组织及其线粒体、上清中的硒及谷胱甘肽过氧化物酶活性明显降低,心肌线粒体脂质氢过氧化物、荧光色脂等增加、同时膜脂组成异常,内膜界面脂的心磷脂(CL)减少,细胞色素C氧化酶(CCO)活性降低;园二色性(CD)异常,近208nm及222nm区的峰值降低,病区粮加喂青菜的动物,随其线粒体硒及CL水平的增加。CCO活性和CD谱均明显恢复;通过外源性磷脂与纯化CCO的重组复性实验,只有CL可使病区粮组酶活性完全达到正常对照水平。表明心肌线粒体膜结合酶CCO活性的降低是CL含量降低引起酶的二级结构(构象)改变的结果。  相似文献   

6.
谷胱甘肽过氧物酶   总被引:9,自引:0,他引:9  
谷胱甘肽过氧物酶(即硒谷胱甘肽过氧物酶SeGSH-PX)是1957年由Mills在牛红细胞(RBC)中发现的。在有谷胱甘肽(GSH)存在时它可防止血红蛋白被过氧化氢氧化。同年Schwarz等发现硒有抗氧化作用。为了搞清硒与GSH-PX的关系,许多学者给动物摄入不同量和不同类型的硒,然后对不同组织GSH-PX活性的变化进行研究。1973年Rotruck等用~(75)Se,Flohe'等用中子活化实验确定硒是Se-GSH-PX的组成成分。1976年Lawrence等发现组织中还存在一种不含硒的GSH-PX。 GSH-PX是细胞内抗脂质过氧化作用的酶性保护系统的主要成分之一,它与维生素E协  相似文献   

7.
采用高脂饮食诱导大鼠非酒精性脂肪性肝病模型,分别给予维生素E、亚硒酸钠或两者合用干预5周,检测血清中甘油三酯(TG)、胆固醇(TC)、谷丙转氨酶(ALT)、谷草转氨酶(AST)水平、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活力;观察肝脏病理变化,检测肝组织UCP2 mRNA与蛋白表达情况;从而探讨维生素E和硒对非酒精性脂肪肝大鼠肝脏解偶联蛋白2(UCP2)及相关因子的影响。结果显示,维生素E和硒两者合用组大鼠血清中TG、TC含量明显降低,SOD活力升高显著,肝组织中UCP2 mRNA与蛋白表达下调明显。上述结果表明维生素E和硒合用降低氧自由基和脂质过氧化物的生成,下调UCP2表达水平的效果最好。  相似文献   

8.
采用高脂饮食诱导大鼠非酒精性脂肪性肝病模型,分别给予维生素E、亚硒酸钠或两者合用干预5周,检测血清中甘油三酯(TG)、胆固醇(TC)、谷丙转氨酶(ALT)、谷草转氨酶(AST)水平、丙二醛(MDA)含量和超氧化物歧化酶(SOD)活力;观察肝脏病理变化,检测肝组织UCP2mRNA与蛋白表达情况;从而探讨维生素E和硒对非酒精性脂肪肝大鼠肝脏解偶联蛋白2(UCP2)及相关因子的影响。结果显示,维生素E和硒两者合用组大鼠血清中TG、TC含量明显降低,SOD活力升高显著,肝组织中UCP2mRNA与蛋白表达下调明显。上述结果表明维生素E和硒合用降低氧自由基和脂质过氧化物的生成,下调UCP2表达水平的效果最好。  相似文献   

9.
几年来我国在克山病、大骨节病的研究中,发现病儿心肌、红细胞膜的形态、结构和功能方面存在异常,在以模拟克山病区居民生活特点、控制磷脂和硒的动物模型实验中,出现了类似克山病心肌损伤的一系列病变(如心电图、病理形态、代谢及心肌磷脂组成的改变),表明控制磷脂代谢可以改变某些组织细胞膜的结构和功能,这对研究心血管病等老年性疾病的发生及其防治将有重要意义,即修饰改善活体的细胞膜将是可能的。本文是我们通过一种控制磷脂代谢的基础饲料喂养动物,观察其对心肌细胞膜组分、膜结合酶活性乃至心肌功能的影响的实验结果,同时对补充磷脂的效应进行了平行观察。  相似文献   

10.
四氧嘧啶致大鼠糖尿病与脂类过氧化   总被引:1,自引:0,他引:1  
四氧嘧啶致SD大白鼠糖尿病的过程中,首先引起体内多种组织器官广泛发生脂类过氧化作用。脂类过氧化物分解产生一些醛类物质,故血清、胰腺、肝和肾组织中TBA反应物(主要成分为丙二醛)含量升高;生成的其它醛类物质与蛋白质结合形成的水溶性荧光物质含量亦增多。抗氧化剂维生素E的抗脂类过氧化作用对机体起保护作用;而维生素C在大量氧化剂四氧嘧啶存在的条件下起氧化强化剂的作用,并使机体对维生素E的消耗增多。  相似文献   

11.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   

12.
Interactions between dietary Cu, Se, and vitamin E in ascorbate-induced hemolysis of erythrocytes obtained from rats fed diets deficient or adequate in these elements were investigated. Hemolysis was affected by all three dietary factors, through closely interrelated but distinct mechanisms. In vitamin E-deficient cells, hemolysis was increased and the amount of hemolysis was directly related to the amount of hemoglobin breakdown. Deficiency of Cu or Se decreased hemolysis, but only in vitamin E-deficient cells. Vitamin E did not affect the breakdown of hemoglobin, but Cu and Se did. Hemolysis and hemoglobin breakdown were decreased by the addition of glucose, through mechanisms independent of that involving reduced glutathione metabolism. These results suggest that vitamin E acts within erythrocyte membranes to prevent products of hemoglobin breakdown from initiating peroxidation and subsequent hemolysis. Effects of Cu and Se are linked with that of vitamin E by the involvement of glutathione peroxidase and Cu superoxide dismutase in the cytoplasmic breakdown of hemoglobin, rather than by a direct effect of these enzymes on lipid peroxidation. It is concluded that the erythrocyte, because of its high heme content, probably represents a special system in terms of peroxidative pathways, and these findings may not be directly applicable to other tissues.  相似文献   

13.
Effects of the combination of vitamin E, selenium, and β-carotene on oxidative damage to rat heart, kidney, lung, and spleen were studied by measurement of the production of oxidized heme proteins (OHP) during spontaneous and prooxidant-induced oxidation. Male SD rats were fed with a vitamin E and selenium deficient diet or a diet supplemented with vitamin E, selenium, and β-carotene, Homogenates of heart, kidney, lung, and spleen were incubated at 37°C with and without the presence of bromotrichloromethane (CBrCl3). The diet supplemented with antioxidants showed a strong protective effect against oxidative damage to heme proteins during the early stages of both spontaneous and CBrCl3-induced oxidation in contrast to the antioxidant deficient diet. Synergism of multiple antioxygenic nutrients against oxidative damage to various animal tissues is discussed.  相似文献   

14.
Experiments were conducted to study the effect of marginal levels of selenium and vitamin E on plasma thyroid hormones of meattype chicks. Plasma thyroxine (T4) was significantly increased when a semipurified diet was supplemented with either selenium or vitamin E. Triiodothyronine (T3) was also significantly increased by vitamin E and in one experiment with selenium supplementation. No significant increase in these hormones was observed in birds fed a corn-soybean-meal diet supplemented with these nutrients. Plasma corticosterone level was reduced and weight of the bursa of Fabricius increased by selenium or vitamin E supplementation. These nutrients may be necessary for providing the optimum thyroid conditions for activity of thyroid peroxidase.  相似文献   

15.
Effects of vitamin E deficiency and its restoration on biochemical characteristics of hepatic peroxisomes were studied. Rats were maintained on the vitamin E-deficient diet for 25 weeks and then on a diet supplemented with vitamin E for 5 weeks. Blood hemolysis by hydrogen peroxide and lipid peroxidation in the liver increased markedly in vitamin E-deficient rats. The former returned to the control level after the resupplying of vitamin E, but the latter did not. Of liver peroxisomal enzymes, the activities of catalase, D-amino-acid oxidase and urate oxidase decreased in vitamin E-deficient rats. On the other hand, activities of fatty acyl-CoA oxidase and carnitine acetyltransferase increased significantly in vitamin E-deficient rats. All activities of these peroxisomal enzymes were restored to the control levels in vitamin E-supplemented rats. The activities of the mitochondrial, lysosomal and microsomal enzymes tested showed no apparent change except that the change of mitochondrial palmitoyltransferase was shown to be similar to that of peroxisomal fatty acid oxidation. These results were also supported by cell fractionation techniques. Following the methods of aqueous polymer two-phase systems, the characteristics of peroxisomal surface membranes altered in respect of their hydrophobicity, but not in respect of the surface charge of peroxisomal membranes. These results indicate that peroxisomal functions, especially those of the fatty acid oxidation system, change their activities more sensitively than other intracellular organelles in response to the condition of vitamin E deficiency.  相似文献   

16.
Myocardial necrosis and mineralization has been identified in a colony of guinea pigs which were subsequently tested for vitamin E and selenium deficiency. Serum vitamin E and whole blood selenium levels were within normal ranges. The erythrocyte glutathione peroxidase test has potential as a predictor of whole blood selenium levels in the guinea pig. The red blood cell hemolysis test used in this study did not correlate consistently with the serum vitamin E levels. We suspect that myocardial necrosis and mineralization may have resulted from inbreeding guinea pigs within the closed colony.  相似文献   

17.
The effect of long-term diets enriched with natural antioxidants was studied on Wistar rats with average initial body weight 150 g. After enrichment of the diet with selenium (0.1 ppm of sodium selenite per 100 g of diet), with vitamin E (6 mg of alpha-tocopherol per 100 g of diet) and selenium and vitamin E together the following results were obtained: diets enriched with selenium or vitamin E given for 12 months reduced the production of lipid peroxides in the liver and serum of the rats. On the other hand, addition of both antioxidants to the diet had no effect on lipid peroxide levels in the animals. Diet enrichment for 12 and 18 months with selenium or vitamin E had no effect on the levels of total cholesterol and HDL cholesterol. The obtained results suggest that selenium and alpha-tocopherol exert an inhibitory action on the processes of ageing in the experimental animal model.  相似文献   

18.
Effects of vitamin E and selenium supplementation on aldehyde oxidase (AO) and xanthine oxidase (XO) activities and antioxidant status in liver, kidney, and heart of streptozotocin (STZ)-induced diabetic rats were examined. AO and XO activities increased significantly after induction of diabetes in rats. Following oral vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) intake once a day for 4 weeks, XO activity decreased significantly. AO activity decreased significantly in liver, but remained unchanged in kidney and heart of vitamin E- and selenium-treated rats compared to the diabetic rats. Total antioxidants status, paraoxonase-1 (PON1) and erythrocyte superoxide dismutase activities significantly decreased in the diabetic rats compared to the controls, while a higher fasting plasma glucose level was observed in the diabetic animals. The glutathione peroxidase activity remained statistically unchanged. Malondialdehyde and oxidized low-density lipoprotein levels were higher in the diabetic animals; however, these values were significantly reduced following vitamin E and selenium supplementation. In summary, both AO and XO activities increase in STZ-induced diabetic rats, and vitamin E and selenium supplementation can reduce these activities. The results also indicate that administration of vitamin E and selenium has hypolipidemic, hypoglycemic, and antioxidative effects. It decreases tissue damages in diabetic rats, too.  相似文献   

19.
The effects of dietary antioxidant vitamins E and C on exercise endurance capacity and mitochondrial oxidation were investigated in rats. The endurance capacity of both vitamin E-deficient and vitamin C-supplemented, E-deficient rats was significantly (P less than 0.05) lower (38.1 and 33.6%, respectively) than control animals. Compared with the normal and vitamin E-deficient rats, there was a significant (P less than 0.05) increase in the concentration of vitamin C in blood and liver of the vitamin E-deficient, C-supplemented animals. Hence dietary vitamin C supplementation does not prevent the inhibition of exercise endurance capacity or increased hemolysis seen in vitamin E deficiency. The mitochondrial activities for the oxidation of palmitoyl carnitine and alpha-ketoglutarate were significantly (P less than 0.05) decreased by a single bout of exercise in brown adipose tissue but not in muscle, heart, or liver from vitamin C-supplemented, E-deficient groups of rats when compared with the activities in the tissue from the same group of rats killed at rest. Similar results were also seen in brown adipose tissue from vitamin E-deficient rats. The results suggest a tissue-specific role for vitamins E and C in substrate oxidation and show that the poor endurance capacity of vitamin E-deficient rats cannot be attributed to any changes in the mitochondrial activity in skeletal or cardiac muscles. It is also concluded that vitamin C supplementation, at least at the dose employed in the present study, cannot counteract the detrimental effects associated with vitamin E deficiency.  相似文献   

20.
The purpose of this study was to determine the effects of dietary fat, vitamin E, and iron on oxidative damage and antioxidant status in kidneys of mice. Sixty 1-month-old male Swiss-Webster mice were fed a basal vitamin E-deficient diet that contained either 8% fish oil + 2% corn oil or 10% lard with or without 1 g all-rac-alpha-tocopherol acetate or 0.74 g ferric citrate per kilogram of diet for 4 weeks. Significantly (P < 0.05) higher levels of lipid peroxidation products, thiobarbituric acid reactants (TBAR), and conjugated dienes were found in the kidneys of mice fed with fish oil compared with mice fed lard irrespective of vitamin E status. Mice maintained on a vitamin E-deficient diet had significantly higher renal levels of TBAR, but not conjugated dienes, than the supplemented group. Fish oil fed mice receiving vitamin E supplementation had lower levels of alpha-tocopherol than did mice in the lard fed group. Significantly higher levels of ascorbic acid were also found in the kidneys of mice fed with fish oil than were found in mice fed lard. The levels of protein carbonyls and glutathione (GSH), and activities of catalase, superoxide dismutase, selenium (Se)-GSH peroxidase, and non-Se-GSH peroxidase were not significantly altered by dietary fat or vitamin E. Dietary iron had no significant effect on any of the oxidative stress and antioxidant indices measured. The results obtained provide experimental evidence for the pro-oxidant effect of high fish oil intake in mouse kidney and suggest that dietary lipids play a key role in determining cellular susceptibility to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号