首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Toll样受体(Toll-like receptors,TLRs)是在各种生物的各器官都广泛表达的一系列模式识别受体。微生物、病毒及一些原虫等病原体相关分子模式都能作为TLRs的激动剂介导机体产生先天性免疫反应,TLRs也能活化细胞因子介导适应性免疫反应。TLRs在细胞增殖,存活,凋亡和血管生成过程中起到重要作用。小鼠上现已发现13种TLRs,其中有11种以上存在于人类机体中。随着对TLRs研究的深入,人们发现激活TLRs能够产生一系列具有抗肿瘤,抗病毒作用的细胞因子,为疾病的治疗开拓了新的道路。本文对TLRs家族及其激动剂的最新研究进展做一综述。  相似文献   

2.
组织干细胞是成体组织中存在的一类尚未分化、能自我更新和增殖的特殊细胞群,具有分化为多种组织细胞的潜能.一般处于休眠状态,在组织损伤修复和维持组织的动态平衡中发挥重要的作用.体育运动、激素、生长因子和药物能激活内源性的组织干细胞,促进组织再生或伤口修复.利用内源性修复机制刺激组织再生,一直是生物医学领域的梦想.最新的研究表明,这个梦想现在可能成为现实.本文简要介绍了组织干细胞的内源性修复、内源性修复的生理学机制、招募内源性干细胞的主要方法及目前采用招募内源性干细胞修复和再生组织这一策略尚需克服的困难和临床应用前景.  相似文献   

3.
细胞代谢或细胞应激均可以引起DNA损伤。DNA损伤可以引起一系列级联反应即DNA损伤反应。炎症免疫反应是活体组织对损伤因子所起的防御反应。DNA损伤反应与炎症的发生发展密切相关,而DNA损伤修复蛋白在免疫系统中具有重要作用。本文将就DNA损伤修复蛋白在炎症免疫反应中的作用及其机制进行综述。  相似文献   

4.
核酸免疫可产生内源性多肽,能够直接递呈给机体的免疫系统,不但可以诱导机体产生细胞免疫反应,而且还可以激活机体的体液免疫应答过程。目前在丙型肝炎疫苗的研制过程中对基因免疫的研究较多,本文就丙型肝炎基因免疫的研究现状作一综述,并对其前景进行展望。  相似文献   

5.
促黑素(melanocyte-stimulating hormones, MSH)和其它的黑色素主要是由垂体中央部前阿黑皮素(POMC)衍生的内源性的多肽,也可产生于机体的其它组织,通过结合五种黑色素受体而产生生理学效应,包括抗炎症反应、抗微生物、降脂、抑制瘢痕形成等。本文主要是对MSH的分类及生成路径和在创面愈合过程的抗脂、抗瘢痕、抗微生物和抗炎效应进行了综述,并指出研究MSH对参与伤口修复的干细胞的迁移、增殖和分化的调控作用及分子机制,将更好地揭示干细胞参与创面修复的分子机制,为再生医学研究提供更多的理论支持。  相似文献   

6.
肠黏膜屏障是机体屏障系统的重要组成部分,可有效阻止肠道寄生菌及其毒素向肠腔外组织移位,防止机体受内源性微生物及其毒素的侵害.自噬在各种生命活动中发挥着重要作用.在缺血缺氧等应激状态下,自噬对细胞存活、清除细胞内衰老细胞器等起重要作用.缺氧可诱导自噬.多数情况下自噬被认为是细胞的一种保护作用,然而在某些条件下细胞过度自噬也能导致细胞凋亡.肠黏膜屏障损伤的研究是目前医学研究领域的一个重要课题,本文就自噬在缺氧环境下对肠黏膜屏障的影响做一综述.  相似文献   

7.
近年来,免疫系统区室化(compartmentalization of immune system)的概念逐渐引起了人们的重视。对各类免疫及非免疫器官中的免疫区室化现象进行深入研究,有助于进一步了解机体免疫系统、免疫应答以及免疫相关疾病的发病机制,并可提供新的应对策略。上皮细胞体内广泛分布,承载机体多种重要生理功能。它作为免疫防御首道防线参与免疫系统区室化形成,并在免疫反应局部微环境中,既可与免疫细胞相互作用发挥固有免疫调节作用,亦可通过自身转分化调节后续适应性免疫应答,在抵御及清除病原体入侵、调控局部炎症免疫反应以及促进组织损伤修复中,发挥了不可或缺的重要作用。病理状态下,上皮细胞又可能是免疫稳态失衡甚或肿瘤发生发展的关键因素。结合免疫系统区室化,对上皮细胞在局部微环境中的免疫调节作用作一综述,为免疫相关疾病的研究以及临床诊疗提供新的思路和策略。  相似文献   

8.
Toll样受体家族(Toll-like receptors,TLRs)成员在固有免疫反应,尤其是调节吞噬细胞(如巨噬细胞等)特异性识别微生物病原体抗原,分泌促炎细胞因子,上调共刺激分子,并诱导机体适应性免疫反应抗微生物病原体感染中发挥重要调控作用,被称为机体固有免疫和适应性免疫调节中的辅助受体(adjuvant receptor)。目前,对Toll样受体家族成员调控免疫反应信号传导途径的研究已成为分子免疫学领域的研究热点,认为主要存在髓样分化蛋白88(MyD88,是一种转接蛋白)依赖性和MyrD88非依赖性两条主要调控途径。本文仅就Toll样受体信号传导途径的研究进展作以简要综述。  相似文献   

9.
机体在组织器官受到损伤时,细胞凋亡和机体对凋亡细胞的清除在组织再生中有着密不可分的联系,其背后促进受损组织器官再生的机制一直是研究热点所在。近期研究发现,巨噬细胞在清除凋亡细胞,维持机体稳态以及促进组织器官修复再生中起到了重要作用。本文主要从凋亡的信号通路、巨噬细胞的极化特点以及凋亡细胞与巨噬细胞的相互作用这3个方面对近期研究进行综述。  相似文献   

10.
Toll样受体(Toll-like receptors,TLR)是先天性免疫反应识别病原体的一个重要分子,在免疫系统中发挥关键作用.其家族各种成员的主要功能是识别入侵病原体表面的各种不同分子模式,随后启动免疫反应,达到保护机体作用.在大脑中,小胶质细胞可以作为抗原提呈细胞,参与脑内免疫反应,也可以通过分泌各种促炎症因子启动或促进免疫反应,而TLR家族在中枢神经免疫系统的作用仍存在争议,它既可以通过促进神经免疫反应枢纽因子的表达来增强免疫,也可因免疫过度而损伤神经细胞.总之,Toll信号通路对中枢神经系统疾病有一定的调控作用.  相似文献   

11.
Role of toll-like receptors in tissue repair and tumorigenesis   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) play a critical role in host defense from microbial infection. TLRs recognize conserved molecular structures produced by microorganisms and induce activation of innate and adaptive immune responses. The inflammatory responses induced by TLRs play an important role TLRs not only in host defense from infection, but also in tissue repair and regeneration. This latter function of TLRs can also contribute to tumorigenesis. Here we review recent progress in understanding the role of TLRs in cancer development.  相似文献   

12.
Uematsu S  Akira S 《Uirusu》2004,54(2):145-151
The immune system has been divided into innate and adaptive component, each of which has different roles and functions in defending the organism against foreign agents, such as bacteria and viruses. An important advance in our understanding of early events in microbial recognition and subsequent development of immune responses was the identification of Toll-like receptors (TLRs) as key molecules of the innate immune systems. The family of TLRs in vertebrates detects conserved structures found in a broad range of pathogens and triggers innate immune responses. At present, 11 members of the TLR family have been identified. A subset of TLRs recognize viral components and induce antiviral responses by producing type I interferons. Recent accumulating evidence has clarified signaling pathways triggered by TLRs in viral infection.  相似文献   

13.
Toll-like receptors (TLRs) play a fundamental role in recognizing infectious and noxious agents as well as products of tissue damage. They are capable of initiating both protective and damaging inflammatory and immune responses. Several biotechnology and pharmaceutical companies have programmes to develop new drugs that are either: agonists of TLRs to enhance immune responses against tumours and infectious agents, or to correct allergic responses; or antagonists designed to reduce inflammation due to infection or autoimmune disease. This article reviews the commercial approaches being undertaken to develop new TLR drugs.  相似文献   

14.
How Location Governs Toll-Like Receptor Signaling   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of innate immune system receptors responsible for recognizing conserved pathogen-associated molecular patterns (PAMPs). PAMP binding to TLRs initiates intracellular signaling pathways that lead to the upregulation of a variety of costimulatory molecules and the synthesis and secretion of various cytokines and interferons by cells of the innate immune system. TLR-induced innate immune responses are a prerequisite for the generation of most adaptive immune responses, and in the case of B cells, TLRs directly regulate signaling from the antigen-specific B-cell receptor. The outcome of TLR signaling is determined, in part, by the cells in which they are expressed and by the selective use of signaling adaptors. Recent studies suggest that, in addition, both the ligand recognition by TLRs and the functional outcome of ligand binding are governed by the subcellular location of the TLRs and their signaling adaptors. In this review we describe what is known about the intracellular trafficking and compartmentalization of TLRs in innate system's dendritic cells and macrophages and in adaptive system's B cells, highlighting how location regulates TLR function.  相似文献   

15.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.  相似文献   

16.
Toll-like receptors: a family of pattern-recognition receptors in mammals   总被引:2,自引:0,他引:2  
Armant MA  Fenton MJ 《Genome biology》2002,3(8):reviews301-6
The innate immune system uses a variety of germline-encoded pattern-recognition receptors that recognize conserved microbial structures or pathogen-associated molecular patterns, such as those that occur in the bacterial cell-wall components peptidoglycan and lipopolysaccharide. Recent studies have highlighted the importance of Toll-like receptors (TLRs) as a family of pattern-recognition receptors in mammals that can discriminate between chemically diverse classes of microbial products. First identified on the basis of sequence similarity with the Drosophila protein Toll, TLRs are members of an ancient superfamily of proteins, which includes related proteins in invertebrates and plants. TLRs activate innate immune defense reactions, such as the release of inflammatory cytokines, but increasing evidence supports an additional critical role for TLRs in orchestrating the development of adaptive immune responses. The sequence similarity between the intracellular domains of the TLRs and the mammalian interleukin-1 and interleukin-18 cytokine receptors reflects the use of a common intracellular signal-transduction cascade triggered by these receptor classes. But more recent findings have demonstrated that there are in fact TLR-specific signaling pathways and cellular responses. Thus, TLRs function as sentinels of the mammalian immune system that can discriminate between diverse pathogen-associated molecular patterns and then elicit pathogen-specific cellular immune responses.  相似文献   

17.
Treg细胞具有维持自身免疫耐受,调节免疫应答的作用。Toll样受体(Toll-like receptors,TLRs)家族可识别病原相关分子模式或内源性配体,启动固有和适应性免疫应答。Treg细胞选择性表达某些TLRs,TLRs活化可能直接增强或降低Treg的免疫抑制功能,这种调节可以影响对感染和肿瘤的免疫监视、移植免疫排斥和自身免疫病发生的进程。因此,了解两者的关系对发现新的治疗靶点和对策有重要的作用。简要综述TLRs对Treg细胞抑制功能直接调节作用的研究进展。  相似文献   

18.
Toll-like receptors: linking innate and adaptive immunity   总被引:13,自引:0,他引:13  
Detection of and response to microbial infections by the immune system depends largely on a family of pattern-recognition receptors called Toll-like receptors (TLRs). These receptors recognize conserved molecular products derived from various classes of pathogens, including Gram-positive and -negative bacteria, DNA and RNA viruses, fungi and protozoa. Recognition of ligands by TLRs leads to a series of signaling events resulting in induction of acute responses necessary to kill the pathogen. TLRs are also responsible for the induction of dendritic cell maturation, which is responsible and necessary for initiation of adaptive immune responses. Although TLRs control induction of adaptive immunity, it is not clear at this point how responses are appropriately tailored by individual TLRs to the advantage of the host.  相似文献   

19.
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.  相似文献   

20.
Han S  Koo J  Bae J  Kim S  Baik S  Kim MY 《BMB reports》2011,44(2):129-134
Toll-like receptors (TLRs), which recognize structurally conserved components among pathogens, are mainly expressed by antigen-presenting cells such as dendritic cells (DCs), B cells, and macrophages. Recognition through TLRs triggers innate immune responses and influences antigen-specific adaptive immune responses. Although studies on the expression and functions of TLRs in antigen-presenting cells have been extensively reported, studies in lymphoid tissue inducer (LTi) cells have been limited. In this study, we observed that LTi cells expressed TLR2 and TLR4 mRNA as well as TLR2 protein and upregulated OX40L, CD30L, and TRANCE expression after stimulation with the TLR2 ligand zymosan or TLR4 ligand LPS. The expression of tumor necrosis factor superfamily (TNFSF) members was significantly upregulated when cells were cocultured with DCs, suggesting that upregulated TNFSF expression may contribute to antigen-specific adaptive immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号