首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
花粉作为城市大气污染物成分之一, 严重影响人类的居住环境和生命健康, 是政府部门和科学界共同关注的热点问题。为此, 该文基于近60年来已发表的京津冀地区气传花粉数据, 总结了该地区主要气传花粉种类及其季节性分布特征, 表明气传花粉浓度的年际变化基本遵循双峰型规律, 即春季高峰以柏科、杨柳科和桦木科等乔木植物花粉为主, 夏秋季高峰以蒿属、葎草属/大麻(Cannabis sativa)以及藜科/苋科等草本植物花粉占优势; 探讨了影响气传花粉浓度的主导气象因子、花粉症发病特点等应当注意的问题; 指出土地改造和行道树种植等人类活动可能对北京地区的气传花粉组成变化产生影响。最后, 文中强调未来气传花粉的长期监测在大气环境评估、花粉过敏防治和城市绿化建设等方面具有重要作用。  相似文献   

2.
北京城区气传花粉季节分布特征   总被引:7,自引:2,他引:5  
研究北京城区气传花粉种类、数量及季节消长规律,为防治花粉症及建设合理城市绿地提供有效资料.应用Burkard采样器于2010年12月31日至2011年12月31日对北京城区气传花粉浓度进行监测,并对花粉浓度进行统计学分析.研究结果显示,2011年北京城区的花粉季节从3月20日起始,至10月18日截止,持续213d,占全年天数的58%;全年花粉含量月分布呈现两个高峰,第1个高峰为3-4月,主要花粉为木犀科、杨属、柳属等树木花粉,占全年花粉总量的30%;第2个高峰为8-9月,主要花粉为菊科、藜科及苋科等莠草花粉,占全年花粉总量的50%;2011年度北京城区最具代表性的气传花粉来自于菊科,比重占了收集到气传花粉的35%.研究结果还表明,秋季的气传花粉致敏性强,所以北京花粉症的高发季节主要集中在秋季,以8-9月为最高,其中有95%的病人在此期间出现花粉症症状.花粉浓度及飘散规律受当地植被状况及气候等多种因素影响,因此,北京城区空气中气传花粉飘散种类、数量及季节分布规律的调查结果,可以为本地区花粉症防治及绿化品种的选择提供可靠依据.  相似文献   

3.
利用重力沉淀法对2012—2016年海淀区气传花粉种类及含量进行监测,分析海淀区的花粉种类、峰值分布特征和含量变化、以及花粉浓度的不连续变化特征,在此基础上采用集合经验模态分解法对花粉浓度进行多时间尺度分析,并分析了花粉浓度与气象要素之间的关系.结果表明: 研究期间,海淀区的主要气传花粉种类已经发生改变,柏科、杨柳科等木本植物代替草本植物成为含量最多的气传花粉类别;花粉浓度的年内峰值分布并无明显改变;近5年花粉浓度整体呈下降趋势,但橘科等草本植物花粉浓度呈上升趋势;统计时段内,花粉浓度在4月上旬、5月下旬及8月上旬共发生3次不连续变化;花粉浓度存在准2 d、准51 d、准128 d的变化周期;温度对于花粉浓度的影响在各气象要素中占有主导地位,16~18 ℃范围内花粉浓度明显升高;气温的变化对逐日花粉浓度的影响具有一定的滞后性和持续性,通常与滞后2~7 d的花粉浓度相关性较高,日照时数和风速对当天的花粉浓度影响最显著.  相似文献   

4.
武汉市武昌地区气传致敏花粉调查研究   总被引:5,自引:0,他引:5  
应用曝片法连续365d收集武昌地区3个调查点的气传花粉,全年共检出花粉48643粒,分属28个科、属。一年中出现2次花粉高峰,即3~4月份,8~9月份。其中优势花粉为悬铃木属(Platanus)、柏科(Cupressaceae)、松属(Pinus)、蒿属(Artemisia)等;最主要的致敏花粉为蒿属、豚草属(Ambrosia)。对影响本地区空气中花粉飘散的因素,几种优势花粉的致敏特点及其临床意义作了初步探讨。  相似文献   

5.
张曼琳  潘妮  赵娟娟  李明娟  江南 《生态学报》2021,41(22):8746-8757
气传致敏花粉会引发过敏症,且可通过每年在花粉季的反复接触逐渐加重,危害人体健康,严重时甚至危害生命。花粉致敏植物在城市中被广泛引种栽培,导致城市花粉症患者数量激增。以深圳市为案例,基于建成区600个样地的实地调查数据,分析花粉致敏植物的种类构成与时空分布,通过构建花粉浓度及花粉致敏危害潜力计算公式,评估花粉致敏危害潜力及其分布特点。结果显示:①调查记录到深圳市建成区花粉致敏植物46科92属186种,其中外来种占43.37%,其中美洲、亚洲和大洋洲来源占国外外来种的81.00%。花粉致敏植物种数以公园绿地最多,达126种。植物花粉致敏等级以Ⅰ级为主,达154种。②花粉致敏植物的盛花期为春夏季,占全年累计开花种数的65.02%。最高峰出现在8月,开花种数达92种。 ③花粉浓度潜力最高值也出现在8月,占全年总值的12.13%。豆科和禾本科植物贡献比例较大,分别占乔木和草本总值的40.86%和64.13%。龙岗区花粉浓度潜力占比较高,占各季花粉量的26.06%-29.42%。④冬春两季各样地花粉致敏危害等级均不高,但夏秋季有些样地达到二级重度危害。罗湖区调查样地全年花粉致敏危害等级均较低,光明区在春夏秋季致敏危害等级皆较高。高危害等级样地主要出现在附属绿地及公园绿地。⑤花粉致敏植物防控措施情景模拟结果,去除主要花粉致敏植物种类比降低所有花粉致敏植物的花粉浓度潜力更有效。本研究为城市花粉致敏植物的管理、规划、养护和研究提供参考。  相似文献   

6.
软质与硬质地表对树木花粉日飘散变化的影响   总被引:1,自引:1,他引:0  
郄光发  杨颖  王成  牟少华 《生态学报》2010,30(15):3974-3982
以油松(Pinus tabulaeformis)、白玉兰(Magnolia denudata)、白皮松(Pinus bungeana)、臭椿(Ailanthus altissima)为被试树种,对比研究了春季静风晴朗天气中软质与硬质两种地表条件下不同树种在距树10m高度1.5m处花粉浓度的日变化特征。研究结果表明:(1)4个树种在相同地表环境的花粉浓度日变化趋势基本一致,但同一树种花粉浓度的日变化特征在软、硬两种地表条件下的差异明显。软质地面一天内空气中花粉浓度最大值出现14:00时前后,04:00时花粉浓度最低,这与全天内空气温度的变化正好一致,而与空气相对湿度的变化恰好相反。硬质地表近地空间空气中的花粉浓度则呈现"双峰型"日变化特征,两次峰值分别出现在14:00时和20:00时,硬质地面花粉浓度20:00时晚高峰的出现时间与硬质地面温度日峰值一致。(2)分析硬质地表20:00时花粉浓度高峰出现的原因可能与硬质地面的散热特性有关,硬质地面夜间释放积蓄热量的过程会在一定程度上增强近地面空气的对流运动,并辅助空气中的花粉粒子不断飘散,形成花粉浓度晚高峰。(3)相对于软质地面来讲,硬质地表对空气中花粉飘散的影响作用持续时间更长,这也在一定程度上延长了致敏花粉的危害时间,加剧了致敏花粉的污染程度。研究还进一步在花粉致敏树种栽植、地表覆盖方式等方面进行了讨论;同时建议花粉症患者根据花粉污染发生规律合理规避花粉浓度聚集高峰期出行,从而有效缓解致敏花粉对易感人群的健康威胁。  相似文献   

7.
潘燕芳  阎顺  穆桂金  孔昭宸  倪健  杨振京 《生态学报》2011,31(23):6999-7006
对中国东天山天池自2001年7月至2006年7月连续5a收集的雪岭云杉大气花粉含量进行统计分析,结果表明:1)一年四季大气中都有雪岭云杉花粉,但花粉数量变化比较大,超过全年90%的大气花粉集中在5、6月份的花粉高峰期,之后花粉浓度逐渐下降,至翌年1月份浓度降至最低,2月开始花粉浓度有升高的趋势;2)5a平均花粉浓度是42.66粒/m3,最高年是2005年,花粉浓度可达99.54粒/m3,最低年2003年,仅为2.13粒/m3;3)雪岭云杉大气花粉高峰期出现在5月22至6月2日,高峰日出现在5月28至6月6日,结束日是在6月18至6月25日,平均持续时间为27 d.观测时段雪岭云杉大气花粉高峰期出现日、高峰日逐年提前,2006年出现日期比2002年提前了7d、高峰日提前9d,结束日期滞后,2006年比2002年滞后6d,花粉高峰期持续时间逐年延长,2006年比2002年延长了12d.分析显示,影响雪岭云杉大气花粉高峰期变化的主要因素是春季气温的升高;4)粗略估算每年新疆的雪岭云杉林带内由大气中降落到表土的花粉量达61 kg/hm2,新疆现有雪岭云杉52.84×104hm2,全年由大气降落到林带内表土的花粉多达3223 t,一部分降落到戈壁、荒漠以及沙漠等一些极端气候区的花粉为一些先锋种植物提供必要的营养物质,具有重要的生态意义.  相似文献   

8.
本文报道1985年4月1日起至1986年3月31日止天津市和平区观察空气甲孢粉飘散的结果。该市全年均有花粉飘散,其中11月起至翌年2月止花粉数量很少,其它月份数量较多。一年中共出现二次高峰,即春季4月和秋季8—9月。春季花粉为木本植物的,如,白蜡树(Fraxinus L.)榆属(Ulmus L.)和杨属(Populus L.)。秋季花粉以草本植物为主,如,藜科(chenopodlaceae)、蒿属(Artemisia L.)、葎草属(Humulus L.)和禾本科(Gramineae)。经结合临床观察,花粉症患者发病日期与植物的开花期基本上是一致的。  相似文献   

9.
【目的】探讨桃园捕食性节肢动物群落特征、结构组成及动态规律,为桃园害虫防治提供依据。【方法】在西北农林科技大学实验站选择树龄5~6年的桃园为调查对象,系统调查园内节肢动物群落的种类和数量,测定群落的相对丰富度、多样性指数(H')、均匀度指数(E)及优势集中性指数(C)等指标,研究园内捕食性节肢动物群落的变化规律。【结果】桃园捕食性节肢动物群落的多样性指数和均匀度指数表现为高-低-高-低的趋势;群落优势度(B)与优势集中性指数呈现低-高-低趋势。食蚜蝇、蜘蛛、瓢虫、步甲和草蛉是桃园主要捕食性节肢动物亚群落。大灰食蚜蝇Metasyrphus corollae和黑带食蚜蝇Episyrphus balteata是食蚜蝇亚群落的优势种群,5月中旬至6月下旬是其发生高峰期;龟纹瓢虫Propylaea japonica是瓢虫亚群落的优势种群,5月中旬至7月下旬是其发生高峰期,随后数量维持在较低水平;龟纹瓢虫鼎斑变型和锚斑变型是桃园最常见的色斑变型,分别占49.6%和29%;蜘蛛亚群落主要包括皿蛛、蟹蛛和球蛛类群,5月上中旬、8月中下旬和10月中旬是其发生高峰期;步甲亚群落的发生高峰期为5月上旬至6月下旬,随后维持在较低的水平;中华草蛉Chrysoperla sinica为草蛉亚群落的优势种群,6月上旬至8月上旬是其发生高峰期。【结论】桃园捕食性节肢动物主要包括捕食性蜘蛛、食蚜蝇、捕食性瓢虫、步甲和草蛉5个亚群落,不同天敌亚群落的结构特征随着季节和气温的变化而相互演替,共同发挥控制害虫的作用。  相似文献   

10.
北京梨园绿盲蝽及其天敌的种群动态   总被引:1,自引:0,他引:1  
郭晨茜  王璇  杨宇晖  刘小侠  张青文 《昆虫学报》2013,56(12):1516-1522
【目的】调查研究梨园绿盲蝽Apolygus lucorum (Meyer-Dür)及其天敌的种群动态, 为梨园绿盲蝽的预测预报和科学防治提供理论依据。【方法】2012-2013年利用色板诱集法和目测法, 对北京市农林科学院林业果树研究所梨园的绿盲蝽及其天敌的种群动态进行了系统调查和分析。【结果】绿板调查结果显示, 绿盲蝽在梨园的发生有2个高峰期, 第1个峰值远高于第2个峰值, 主要发生高峰期为5月下旬至6月中旬。目测调查结果显示, 2012年, 绿盲蝽有两个发生高峰期, 5月中旬达到第1个峰值, 5月下旬达到第2个峰值; 2013年, 绿盲蝽仅有5月下旬一个发生高峰期。2012和2013年天敌主要发生高峰期均为6月上旬至下旬。梨园调查到的天敌主要为捕食类天敌, 包括蜘蛛和天敌昆虫, 其中天敌昆虫有7种隶属3目3科。天敌的优势种类为蜘蛛、 龟纹瓢虫、 异色瓢虫、 中华草蛉。【结论】天敌的发生与绿盲蝽有明显的时间和数量跟随关系。  相似文献   

11.
Summary Weeds and among themAmbrosia are probably the most important vascular plants related to pollinosis in Hungary. Sampling was carried out in central (Budapest) and in southern (Paks, Szeged) Hungary. The results of two years (1989–1990) of aerobiological study onAmbrosia airborne pollen are reported. The highest percentage of airborne pollen was found in the mid-August to mid-September period, having a good correlation with clinical data on pollinosis. The implications of these results are considered in the context of forecasting and prevention of seasonal ragweed pollinosis.  相似文献   

12.
Models for forecasting airborne Cupressaceae pollen levels in central Spain   总被引:1,自引:0,他引:1  
The influence of meteorological variables on airborne Cupressaceae pollen levels in central Spain was analyzed, and prediction models based on polynomial and multiple regressions were used to predict pollen counts throughout the pollen season. The Cupressaceae pollen type was selected in view of both its abundance in the atmosphere of the central Iberian Peninsula (particularly from January to March) and its allergenic importance. Sampling was performed uninterruptedly over a 5-year period, using a Hirst volumetric sampler and the sampling method established by the Spanish Aerobiology Network. Temperature displayed the strongest (positive) correlation with Cupressaceae pollen counts. Polynomial and multiple regression analysis showed that maximum temperature was the most influential variable included in prediction models. The prediction equations obtained for the study period were reasonably satisfactory, accounting for 48% and 59% of the variation in airborne pollen levels.  相似文献   

13.
空气致敏花粉污染研究进展   总被引:4,自引:1,他引:3  
李倩  靳颖  华振玲  刘家熙 《生态学报》2005,25(2):334-338
对空气致敏花粉污染概念的提出 ,空气致敏花粉污染的特点和影响因素 ,花粉采集方法的改进以及空气致敏花粉污染的研究进展等方面进行了总结 ,指出了研究中存在的问题 ,并对研究前景进行了展望  相似文献   

14.
H. Ribeiro  I. Abreu 《Aerobiologia》2014,30(3):333-344
Airborne pollen calendars are useful to estimate the flowering season of the different plants as well as to indicate the allergenic potential present in the atmosphere at a given time. In this study, it is presented a 10-year survey of the atmospheric concentration of allergenic pollen types. Airborne pollen was performed, from 2003 to 2012, using a 7-day Hirst-type volumetric trap. The interannual variation of the daily mean concentration of the number of pollen grains and the main pollen season was determined as well as the hourly variations and correlation with meteorological parameters. During the study period, 18 different allergenic pollen types were considered based on its representativeness on the total annual airborne pollen concentration. The lowest annual concentrations were sampled in 2006 and the highest in 2007. The highest airborne pollen concentration was found during early spring and early summer. On the contrary, December was the month with the lowest pollen concentration. The major pollen sampled belongs to trees followed by weeds and grasses, being the most representative pollen types in the atmosphere: Urticaceae, Platanus, Poaceae, Pinaceae, Cupressaceae, Acer, Quercus, Castanea, Plantago, Alnus, Olea europaea, Betula, Myrtaceae and Populus. Intradiurnal distribution patterns of the pollen types studied presented differences with some taxa being predominantly sampled in the morning (9–11 a.m.) while others in first night hours (between 9 and 12 p.m.). Significantly correlations were found between the airborne pollen concentration and meteorological parameters.  相似文献   

15.
This report describes qualitatively and quantitatively the level of pollen in the atmosphere in the central region of Bursa. Turkey. In 1991, the season of maximum pollen concentration was from April to June, with a prevalence of arboreal pollen during the initial months, and of pollen from herbaceous plants in the latter months. During the year of research, 24 taxa of arboreal and 12 taxa of herbaceous pollen grains were collected and identified. In the region investigatedPinus, Cupressaceae/Taxaceae,Abies nordmanniana, Platanus orientalis, Olea europaea, Gramineae, Urticaceae, Chenopodiaceae/Amaranthaceae,Artemisia and Compositae were responsible for the greatest amounts of pollen. Some important allergenic pollens such asOlea europaea, Gramineae and Urticaceae were also found in high concentration. In this study, a pollen calendar for the region is presented.  相似文献   

16.
In this study, a Tauber pollen trap was used in the urban area of Shijiazhuang to monitor continuously the outdoor air pollen from 2007 to 2011. The trap was emptied at regular intervals (typically 15 days). The results show that airborne pollen assemblages are generally similar each year among 2007–2011 and are responsive to the flowering times of plants, being dominated by pollen from woody plants in the spring and by pollen from herbaceous plants in summer and autumn. Two peak pollen influx periods, especially for the main allergenic pollen taxa, are seen, one between early March to early June and a second between late August to early October. During the four seasons, the main pollen taxa are Juglans, Artemisia, Platanus, Populus, Chenopodiaceae, Urtica + Humulus, Rosaceae, Pinus, Poaceae, Cereals, Quercus, and Betula, and all taxa other than Rosaceae were confirmed by relevant studies to be allergenic pollen taxa. RDA analysis of pollen influx and meteorological factors shows that in spring, temperature and humidity have significant effects on the pollen influx of woody plants; in summer, humidity and precipitation have significant negative effects on pollen influx of herbaceous plants; in autumn, temperature, water vapor pressure, and precipitation have a significant positive influence on herbaceous pollen influx; in winter, there were no significant correlations between airborne pollen influx and meteorological factors. The results reveal the dispersion patterns of airborne pollen and provide an important reference to appropriate construction of urban green systems and the reliable reduction in regional pollinosis.  相似文献   

17.
The number of individuals allergic to plant pollen has recently been on a constant increase. The knowledge of diurnal distribution and abundance of allergenic pollen types, their patterns and response to source position and weather is useful to correlate hay fever symptoms with the presence of allergenic pollen in the atmosphere. The aim of this study was to determine diurnal distribution of total airborne pollen, pollen of particular allergenic taxa, possible variation in diurnal pollen distribution at measuring sites placed at different heights, and effect of some meteorological parameters on airborne pollen concentrations. A 7-day Hirst-type volumetric pollen trap was used for pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). Total pollen of all plant taxa (Ambrosia sp., Betula sp., Cupressaceae, Urticaceae, Poaceae, Quercus sp., Fraxinus sp., Alnus sp., Corylus sp., Populus sp., Pinus sp., Picea sp.) observed showed a regular diurnal distribution at both sampling sites in both study years, with a rise in the pollen concentration recorded after 4.00 a.m. and 6.00 a.m., respectively. The peak pollen concentration occurred between 12.00 a.m. and 4.00 p.m., and the lowest diurnal pollen concentrations were recorded overnight. About 50% of the 24-h pollen concentration were released to the atmosphere between 10.00 a.m. and 4.00 p.m. The timing and size of diurnal peaks were closely related to high temperature, low humidity and south-west maximum wind direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号