首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 105 毫秒
1.
林窗几何特征的测定方法   总被引:1,自引:0,他引:1  
林窗面积、形状及边界木高是决定林窗环境异质性的3个林窗几何特征,影响林窗内植物更新。林窗几何特征的快速测量方法是林窗研究的基础,测量方法可分为2类:基于地面实际测量的地面法和基于林窗林冠照片的相片法。地面法费时费力,受人为因素影响大,可测量林冠林窗和扩展林窗的面积,但不能测量林窗形状和边界木高。相片法具有简单、客观、可重复的优点,但仅适用于林冠林窗。相片法共有5种:"平面相片法"、"航片法"、"半球面影像法"、"双半球面影像法"和"改进的半球面影像法"。前3种测量方法只能测量林冠林窗面积;"改进的半球面影像法"可测量林冠林窗面积和形状,且精度高于前3种相片法,但所需参数最多;"双半球面影像法"可测量林窗面积、形状及边界木高这3个林窗几何特征,且精度较高,但拍摄要求较高。  相似文献   

2.
黄土丘陵区油松天然次生林林窗特征与更新动态   总被引:4,自引:0,他引:4  
研究了黄土丘陵区油松天然次生林林窗的形状、大小结构、分布、形成木特征及其更新状况.结果表明:在油松天然次生林中,林冠林窗(CG)和扩展林窗(EG)面积均呈以小林窗为主的偏态分布.CG平均面积为31.15 m2,以20~40 m2林窗的数量比和面积比最大,分别为38.24%和30.50%;EG平均面积为58.04 m2,以30~60 m2的数量比和面积比最大,分别为36.77%和27.79%,且CG的平均面积占EG平均面积的53.67%;林窗形状多呈椭圆形,高度多在14~16 m;林窗形成年龄以10~20年为主,占33.82%.林窗中基折和枯立木分别占形成木总数的47.66%和23.44%.林窗形成的主要因素是人为间伐或盗伐,树木衰老等引起的抗性下降、干旱、病虫害等也是导致树木死亡的原因之一;每个林窗中平均有1.89个形成木,其中以2株形成木的林窗最多.林窗形成木主要是油松,其次为山杨、白桦和辽东栎等.形成木的径级呈明显的偏态分布,以10~20 cm和21~30 cm径级最为普遍,分别占总数的25.0%和45.31%,与林窗面积偏态分布吻合;林窗内林木的更新状况好于林下,且油松幼苗不存在断层,而油松林下幼苗在年龄结构上有明显的断层.  相似文献   

3.
以四川宜宾39年生马尾松人工林人工采伐形成的不同大小林窗为对象,研究林窗对土壤团聚体的组成、有机碳及活性有机碳含量和储量的影响.结果表明: 土壤团聚体组成以>2 mm团聚体为主,其含量占团聚体总量的51.7%~78.7%.>5 mm土壤团聚体有机碳和活性有机碳含量与土壤总有机碳和总活性有机碳含量相关性最高,且有机碳及活性有机碳含量和储量均较高,是该地区土壤有机碳固定的特征团聚体.马尾松林窗形成后,土壤总有机碳及各团聚体有机碳含量普遍降低,但1225 m2林窗有机碳储量略高于林下;总活性有机碳含量仅225和400 m2林窗较马尾松林下高,总活性有机碳储量225、400、900和1225 m2林窗较马尾松林下高,其余面积林窗低于林下.这表明合适的林窗面积可以增加土壤有机碳及活性有机碳积累.林窗大小显著影响到团聚体的组成、有机碳及活性有机碳含量和储量.其中,1225 m2林窗土壤有机碳含量和储量均最高,活性有机碳储量也较高,且团聚体组成较好,是比较适宜的林窗面积.  相似文献   

4.
辽东山区次生林不同大小林窗光照特征比较   总被引:6,自引:0,他引:6  
以辽东山区天然次生林中3种不同大小林窗(G1,670 m2;G2,290 m2和G3,90 m2)为对象,通过对林窗内光强进行连续观测,比较光量子通量密度(PPFD)的时空分布.结果表明:3种林窗的PPFD日变化均呈现北高南低,且面积越大,PPFD高值区范围越广,异质性越明显;3种林窗的PPFD月变化规律为:林窗内各方位PPFD最大值集中在生长季初期(4—5月),最小值出现的月份则有所差异;3种林窗东部和西部的PPFD出现极值的时间基本一致,且春季光强均明显高于夏、秋季(P<0.05);G1、G2、G3中心点的月平均PPFD分别占全光照的66.59%、49.05%和30.37%,在生长旺盛期,中心点光强分别是林内的37.8倍、27.9倍和10.3倍.受林窗面积不同,以及地形、边缘木高度(林窗形状)等因素的影响,不同大小林窗接收的光强及其分布格局不同,这是导致林窗内更新格局、物种组成发生变化的关键因素.  相似文献   

5.
开展林窗空间格局与林下木本植物多样性关系的研究,对于认识森林物种共存、生物多样性维持以及生态系统可持续发展具有重要意义。本研究以广西金钟山自然保护区24 hm2永久森林动态监测样地为对象,采用机载激光雷达获取样地点云数据,通过R语言提取林窗并计算各林窗的形状复杂指数,利用相关分析量化林窗特征与林下木本植物多样性的关系。结果表明:该研究区林窗空隙率为6.16%,密度为15.5个·hm-2,平均面积为39.72 m2,整体以微小和中型林窗为主;林窗空间分布格局存在地形分异特征,多分布于低海拔和缓坡区域;林窗形状复杂指数与香农指数、物种丰富度指数均呈正相关,且在低海拔和陡坡处表现更加明显。本研究揭示了亚热带森林林窗植被更新特征,对区域生物多样性保护具有一定指导作用。  相似文献   

6.
研究川西亚高山地区米亚罗林区云杉低效林不同面积林窗(50、100、150 m2)对表层(0~15 cm)、亚表层(15~30 cm)土壤有机碳含量、微生物生物量碳动态特征的影响.结果表明: 对照以及50、100、150 m2林窗表层土壤有机碳含量和微生物生物量碳在4个季节中均显著高于亚表层;各林窗处理下表层和亚表层土壤有机碳含量和微生物生物量碳在不同季节存在差异;林窗处理显著提高各季节土壤有机碳含量和微生物生物量碳,50、100、150 m2林窗表层年均土壤有机碳含量分别较对照提高35.4%、21.2%和10.3%,亚表层提高45.5%、25.0%和12.1%,在土壤表层和亚表层年均土壤微生物生物量碳分别提高26.7%、16.7%、11.3%和24.4%、12.6%、7.3%.土壤有机碳含量与土壤pH、含水量呈显著负相关,与土壤温度呈显著正相关;土壤微生物生物量碳受土壤有机碳以及土壤pH、含水量、温度变化的影响显著.林窗改造可以改善林内环境,林窗面积的增加会显著降低微生物活性和凋落物分解速率,导致土壤有机碳含量和微生物生物量碳降低.
  相似文献   

7.
林窗环境异质性导致群落物种多样性与系统发育多样性(phylogenetic diversity, PD)存在差异, 研究不同大小的林窗中群落的物种多样性与系统发育多样性有助于揭示林下生物多样性的形成及维持机制。本文以格氏栲(Castanopsis kawakamii)天然林为研究对象, 通过Pearson相关性分析与广义线性模型探讨了林窗内物种多样性与系统发育多样性间的相互关系及其环境影响因素。结果表明: (1)大林窗(面积 > 200 m2)植物种类及多度均高于中林窗(50 m2 ≤ 面积 < 100 m2)、小林窗(30 m2 ≤ 面积 < 50 m2)和非林窗(面积 = 100 m2)。大林窗群落系统发育结构趋于发散, 中、小林窗和非林窗群落系统发育结构受到生境过滤和竞争排斥综合作用。(2)群落系统发育多样性指数与物种丰富度(species richness, SR)、Margalef丰富度指数和Shannon-Wiener指数均呈显著正相关, 这与林窗内稀有种种类组成多于优势种有关。(3)林窗面积对物种多样性存在显著正效应; 土壤全氮含量对系统发育多样性和系统发育结构存在显著正效应。林窗形成提高了格氏栲天然林群落物种多样性和系统发育多样性, 林窗面积与土壤全氮共同驱动了格氏栲天然林林窗物种多样性和系统发育多样性的变化。  相似文献   

8.
刘峰  谭畅  雷丕锋 《生态学杂志》2014,25(11):3229-3236
以雪峰山武冈林场为研究对象,利用遥感数据和地面实测样地数据,研究机载激光雷达(LiDAR)估测中亚热带森林乔木层单木地上生物量的能力.利用条件随机场和最优化方法实现LiDAR点云的单木分割,以单木尺度为对象提取的植被点云空间结构、回波特征以及地形特征等作为遥感变量,采用回归模型估测乔木层地上生物量.结果表明: 针叶林、阔叶林和针阔混交林的单木识别率分别为93%、86%和60%;多元逐步回归模型的调整决定系数分别为0.83、0.81和0.74,均方根误差分别为28.22、29.79和32.31 t·hm-2;以冠层体积、树高百分位值、坡度和回波强度值构成的模型精度明显高于以树高为因子的传统回归模型精度.以单木为对象从LiDAR点云中提取的遥感变量有助于提高森林生物量估测精度.
  相似文献   

9.
天童常绿阔叶林林窗的地形分布格局   总被引:2,自引:0,他引:2  
为探究多维地形因素对林窗分布的影响,以天童20 hm2常绿阔叶林动态监测样地内的林窗为对象,结合地理信息系统软件,分析了林窗空隙率、林窗密度以及林窗面积在海拔、坡度、坡向、坡形、坡位5种地形因子下的分布格局.结果表明: 该样地林窗空隙率为13.1%,林窗密度为9.5个·hm-2,林窗平均面积为137.82 m2;因高海拔台风干扰的强度较大,高海拔段(≥500 m)林窗的空隙率和密度显著大于中低海拔段(<500 m);台风带来的强降雨极易引起小范围滑坡,使得沟谷的林窗空隙率和密度显著大于侧坡,林窗平均面积显著大于侧坡和山脊.台风及其带来的强降雨是造成林窗在海拔及坡位梯度上具有显著性差异的主要原因.  相似文献   

10.
为探究多维地形因素对林窗分布的影响,以天童20 hm2常绿阔叶林动态监测样地内的林窗为对象,结合地理信息系统软件,分析了林窗空隙率、林窗密度以及林窗面积在海拔、坡度、坡向、坡形、坡位5种地形因子下的分布格局.结果表明: 该样地林窗空隙率为13.1%,林窗密度为9.5个·hm-2,林窗平均面积为137.82 m2;因高海拔台风干扰的强度较大,高海拔段(≥500 m)林窗的空隙率和密度显著大于中低海拔段(<500 m);台风带来的强降雨极易引起小范围滑坡,使得沟谷的林窗空隙率和密度显著大于侧坡,林窗平均面积显著大于侧坡和山脊.台风及其带来的强降雨是造成林窗在海拔及坡位梯度上具有显著性差异的主要原因.  相似文献   

11.
采用离轴积分腔输出光谱技术测定华北低丘山区栓皮栎人工林冠层上缘(11 m)和下部(6 m)大气CO2浓度和δ13C值,在小时尺度上分析冠层CO2浓度和δ13C变化及其影响因素.结果表明: 冠层CO2浓度呈先高后低再升高的日变化趋势,而δ13C值没有明显一致的日变化规律.白天大气不稳定状态出现的频率为70.2%,在光合作用和林内湍流的共同作用下,栓皮栎冠层下部CO2浓度高于冠层上缘约1.70 μmol·mol-1,而δ13C值低于冠层上缘约0.81‰.晚上大气稳定状态出现的频率为76.2%,湍流弱,冠层叶片呼出的CO2不易流动,导致冠层下部CO2浓度高于上缘约1.24 μmol·mol-113C值低于冠层上缘约0.58‰.白天和晚上冠层上下缘的CO2浓度差值与δ13C差值均呈显著的相关关系.逐步回归分析表明,白天太阳辐射和相对湿度是影响冠层CO2浓度和δ13C值差异的主要环境因子,晚上温度显著影响冠层下部与上缘δ13C值的变化,这些环境因子通过增强或减弱光合和呼吸作用来影响冠层大气中CO2浓度和δ13C值的变化.  相似文献   

12.
亚热带天然阔叶林转换为杉木人工林对土壤呼吸的影响   总被引:1,自引:0,他引:1  
采用静态箱-气相色谱法对浙江省临安市玲珑山风景区天然阔叶林和由天然阔叶林改造的杉木人工林的土壤呼吸进行1年的定位监测.结果表明:天然阔叶林和杉木人工林土壤CO2排放速率均呈现一致的季节性变化规律即夏秋季高、冬春季低;天然阔叶林和杉木人工林土壤CO2排放速率分别为20.0~111.3和4.1~118.6 mg C·m-2·h-1;天然阔叶林土壤CO2年累积排放通量(16.46 t CO2·hm-2·a-1)显著高于杉木人工林(11.99 t CO2·hm-2·a-1).天然阔叶林和杉木人工林土壤CO2排放速率与土壤含水量均没有显著相关性,而与5 cm处土壤温度呈显著指数相关,Q10值分别为1.44和2.97;天然阔叶林土壤CO2排放速率与土壤水溶性碳(WSOC)含量无显著相关性,杉木人工林土壤CO2排放速率与WSOC含量呈显著相关.天然阔叶林转换为杉木人工林显著降低了土壤CO2排放,提高了土壤呼吸对环境因子的敏感性.
  相似文献   

13.
2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明: 研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.  相似文献   

14.
郭丙玉  高慧  唐诚  刘涛  褚贵新 《生态学杂志》2015,26(12):3679-3686
优化水、氮供应是实现作物高产与水肥资源高效利用的有效途径.本文研究了田间试验条件下,水(4500、6750、9000 m3·hm-2)、氮(0、225、330、435、540 kg·hm-2)互作对高密度(≥105000 株·hm-2)滴灌玉米干物质积累、氮素吸收及产量的影响.结果表明: 玉米干物质积累与吸氮量均随灌溉和施氮水平的增加明显升高,当施氮量大于435 kg·hm-2和灌溉量大于9000 m3·hm-2时则呈减少趋势.完熟期玉米干物质积累对灌水的响应表现为W6750(36359 kg·hm-2)>W9000(35077 kg·hm-2)>W4500(33451 kg·hm-2),施氮对玉米吸氮量的变化表现为N435(459.9 kg·hm-2)>N540(458.1 kg·hm-2)>N330(416.3 kg·hm-2)>N225(351.3 kg·hm-2),N435比N330、N220分别升高9.1%、32.7%,N540比N435降低0.6%.在施氮量0~435 kg·hm-2范围内,玉米最大氮素吸收速率随施氮量增加而升高,在施氮量为435 kg·hm-2时达最大(6.57 kg·hm-2·d-1).灌水与施氮均可显著增加玉米产量、穗粒数和穗粒质量,二者有明显的正交互作用,且以氮为主效应.在施氮0~435 kg·hm-2范围内,氮肥利用率随施氮量的增加而升高,此后反而降低;灌溉水分生产率随施氮量升高而增加,随灌水量增加而明显下降,灌溉定额为4500~6750 m3·hm-2时,灌溉水分生产率可达2.57~3.80 kg·m-3.玉米最高产量18072 kg·hm-2的施氮量为567.0 kg·hm-2.最佳经济施氮量为427.9~467.7 kg N·hm-2时,玉米产量在17109~17138 kg·hm-2,氮素偏生产力和氮肥利用率分别达122 kg N·hm-2和45.0%.水氮一体化施肥可实现滴灌玉米高产协同水、氮利用效率的共同提高.  相似文献   

15.
红树林湿地碳储量及碳汇研究进展   总被引:9,自引:0,他引:9  
红树林是生长在热带和亚热带地区潮间带的特殊的湿地森林,在防风固田、促进淤泥沉积、抵御海啸和台风等自然灾害和保护海岸线方面起着重要的作用.全球约有红树林152000 km2,占陆地森林面积的0.4%,我国约有230 km2.热带红树林湿地的碳储量平均高达1023 Mg C·hm-2,全球红树林湿地的碳汇能力在0.18~0.228 Pg C·a-1.影响红树林碳储量和碳汇能力的主要因子除了植物种类组成以外,气温、海水温度、海水盐度、土壤理化性质、大气CO2浓度及人类干扰等均有着重要作用.红树林湿地碳储量、碳汇能力的研究方法以实测法为基础,包括异速方程、遥感反演和模型模拟等.研究红树林湿地碳储量及碳汇能力,有利于深入认识红树林湿地碳循环过程及其调控机制,对红树林湿地的保护和合理利用具有重要意义.  相似文献   

16.
以毛白杨为例,提出一种利用激光粒度仪和天平定量评估植物叶片吸滞细颗粒物(PM2.5,直径d≤2.5 μm)等大气颗粒物能力的方法——洗脱称量粒度分析法(EWPA),实现了对植物叶片吸滞大气颗粒物质量和粒径分布的直接、准确测定,可操作性强.首先,进行预试验对试验方法的稳定性进行检验;其次,通过对叶片进行清洗、离心洗液、烘干等步骤收集其吸滞的颗粒物,然后对颗粒物称量,并采用激光粒度仪测定颗粒物的粒径分布;最后,利用叶面积和林分叶面积指数数据换算得到单位面积叶片和林分的各径级颗粒物吸滞量.在北京市奥林匹克森林公园内一片毛白杨林分(27 d未经历降雨)中应用该法,测得毛白杨叶片吸滞大气颗粒物的粒径均值为17.8 μm,吸滞PM2.5、可吸入颗粒物(PM10,d≤10 μm)和总悬浮颗粒物(TSP,d≤100 μm)的体积百分比分别为13.7%、47.2%和99.9%;叶片的PM2.5、PM10、TSP和总颗粒物吸滞量分别为8.88×10-6、30.6×10-6、64.7×10-6和64.8×10-6 g·cm-2;林分的PM2.5、PM10、TSP和总颗粒物吸滞量分别为0.963、3.32、7.01和7.02 kg·hm-2.  相似文献   

17.
贺丹妮  杨华  温静  谢榕 《应用生态学报》2020,31(6):1916-1922
2019年8月在云冷杉针阔混交林样地(0.36 hm2),对48个林隙及幼苗(0.2<更新高度RH<1 m)、幼树(RH≥1 m,胸径DBH<5 cm)进行调查,分析林隙大小(<20 m2,小;20~50 m2,中;50~120 m2,大;>120 m2,特大)对林隙内红松、鱼鳞云杉及冷杉幼苗幼树密度和生长指标(高、基径)的短期影响,并采用核密度估计法分析其空间分布规律。结果表明: 云冷杉更新的密度通常随林隙增大而降低,仅对幼树影响显著,小林隙下云冷杉幼树密度分别为0.34和1.74株·m-2,红松密度不受林隙大小的影响。林隙大小对冷杉幼苗幼树生长指标的影响最大,对红松影响最小,平均最大值多出现在大林隙。红松和云杉幼树的基径和树高最大值均分布在小、中、大林隙东北部,在特大林隙中转移至冠空隙西北部。小林隙有助于幼苗的建立和萌发,可通过择伐冷杉创造小林隙,随后扩大林隙面积(>50 m2)促进幼树生长,需要持续监测来确定林隙大小对森林更新的长期影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号