首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
通过两年的田间试验,研究了滴水量和滴水频率对膜下滴灌棉田土壤水分分布及棉花水分利用效率的影响.结果表明:从整个生育期来看,当滴水量(375 mm)相同时,高频滴灌(每3天1次)处理0~20 cm土层含水率较高而深层土壤湿润不够;低频滴灌(每10天1次)处理有利于水分的下渗和侧渗,深层土壤含水率较高,但水分补给不及时,表层土壤偏低;总体上中频滴灌(每7天1次)处理有利于水分在土壤剖面中的均匀分配.当滴水频率相同时,滴水量越大,土壤含水率越高,40 cm以下土层含水率也越高.不同处理的棉田耗水规律基本一致,苗期较低,平均不高于1.7 mm·d-1,蕾期开始上升至花铃期达到最高,日均耗水量可达8.7 mm·d-1,吐絮期回落到1.0 mm·d-1左右.总耗水量与降水和滴水量密切相关,而与滴水频率无关;滴水频率对棉花水分利用效率无显著影响,但水分利用效率随滴水量的增大而显著降低.少量滴灌(300 mm)虽然可以获得较高的水分利用效率,但减产严重,过量滴灌(450mm)无显著增产效应,水分浪费严重.在当地棉田自然条件下,采用中量(375 mm)+中低频(每7天或10天1次)的滴灌模式为宜.  相似文献   

2.
膜下滴灌水氮调控对南疆棉花产量及水氮利用率的影响   总被引:2,自引:2,他引:0  
为探明水氮调控对膜下滴灌棉花的生长特性、产量构成因素以及水氮利用效率的影响,设置了3个灌溉水量和5个氮素水平进行大田棉花膜下滴灌试验.结果表明: 随着灌溉水量的增加,棉花的株高、主茎叶数、果枝数和叶面积指数显著增加,棉花叶、茎干物质积累增加,但抑制了根系生长,与低(4950 mm·hm-2)和高(6750 mm·hm-2)灌水量处理相比,中灌水量(5850 mm·hm-2)处理平均单株有效铃数和单铃质量分别增加0.96、0.4个和0.22、0.11 g.与其他施氮处理相比,施氮量为300 kg·hm-2时棉花茎直径显著增加,促进了棉花蕾、铃和根系的发育,而且在灌水量为5850 mm·hm-2条件下,棉花干物质由营养器官向生殖器官的分配比灌水量为4950和6750 mm·hm-2处理分别增加5.1%和29.6%.灌溉水量对棉花产量有显著影响,对衣分率影响不显著,而施氮量对棉花产量和衣分率都有一定的影响,但灌溉水量过低会抑制氮肥增产效应的发挥.在本试验条件下,灌水量为5850 mm·hm-2、施氮量为300 kg·hm-2时,棉花生长健壮,株型结构优化,显著促进了干物质向生殖器官的运转,有效铃数、单铃质量和衣分增加,产量达到最高(6992 kg·hm-2),水分利用效率和氮肥利用率分别达1.45 kg·m-3和45.9%.  相似文献   

3.
为探索新疆膜下滴灌棉花简易方便的高效灌溉指标,于2008-2009年在乌鲁木齐开展了2个生长季的人工控水试验.在棉花蕾期和花铃期均设2个灌水周期和2个灌水水平,分析了不同水分处理对棉花产量、耗水量和水分利用效率的影响.结果表明: 各处理的棉花耗水过程与蒸发皿蒸发量具有较高的相关性,高产棉田\[2008年处理T4(蕾期和花铃期灌水周期分别为10和7 d,相应灌水定额分别为30.0和37.5 mm)和2009年处理T1(蕾期和花铃期灌水周期均为7 d,相应灌水定额分别为22.5和37.5 mm)\]苗期、蕾期、花铃期和吐絮期的蒸发皿-作物系数(Kp)分别为0.29~0.30、0.52~0.53、0.74~0.88和0.19~0.20;2008年处理T4的产量(5060 kg·hm-2)和水分利用效率(1.00 kg·m-3)最高,2009年处理T1的产量(4467 kg·hm-2)和水分利用效率(0.99 kg·m-3)最高;蕾期蒸发皿7和10 d的平均累积蒸发量分别为40~50和60~70 mm,花铃期蒸发皿7 d的累积蒸发量为40~50 mm.在新疆棉区灌45 mm出苗水、苗期和吐絮期不灌水,蕾期和花铃期当蒸发皿蒸发量达到45~65和45 mm时开始灌溉,灌水定额通过阶段累积蒸发量与蒸发皿-作物系数Kp(蕾期、初花期、盛花期和末花期分别取0.5、0.75、0.85和0.75)相乘确定时,在获得高产的同时可节约灌溉水资源,提高水分利用效率,可以作为当地膜下滴灌棉田简易方便的高效灌溉指标.  相似文献   

4.
为评价AHC模型在辽西北半干旱地区的适用性及寻求花生膜下滴灌条件下的最优灌水量,本研究以2016、2017年花生田间试验数据为基础,首先对模型参数进行全局敏感性分析,然后对土壤水分、作物生长模块参数进行率定及验证,最后应用AHC模型分析了试验年份花生产量和水分利用效率对不同灌水量的响应。结果表明: 模型的极敏感参数为土壤第1、2层的饱和导水率。校验过程中,土壤含水率模拟值与实测值的均方根误差(RMSE)和平均相对误差(MRE)分别在0.02~0.03 cm3·cm-3和1.5%~2.3%,叶面积指数、株高的RMSE和MRE分别在0.3~0.6、4.2~4.5 cm和5.0%~8.9%、5.2%~6.8%,花生产量和耗水量的MRE都在5%以内,模型适用于辽西北地区土壤水分与花生生长模拟研究。随着灌水量增加,花生产量增加,而水分利用效率却减小。综合考虑产量和水分利用效率,试验年份(平水年)辽西北半干旱地区膜下滴灌花生优化灌水量为80~97 mm。  相似文献   

5.
海北高寒灌丛草甸蒸散量特征   总被引:1,自引:0,他引:1  
郑涵  王秋凤  李英年  朱先进 《生态学杂志》2013,24(11):3221-3228
蒸散是陆地生态系统水分循环的重要分量,研究典型生态系统的蒸散规律有助于认识水分循环过程,进而为水资源合理利用提供依据.本研究基于涡度相关法研究了2003-2011年海北高寒灌丛草甸生态系统的蒸散量变化特征及水分收支状况.结果表明: 2003-2011年,研究区蒸散量的季节变化明显,最大值一般出现在生长旺季的7-8月,达4.4~5.7 mm·d-1;最小值多出现在1月或12月(0.09±0.04 mm·d-1).蒸散量的年际动态明显,为451.3~681.3 mm,其中,生长季占70%以上.年蒸散量与年降水量之比的平均值为1.06±0.17,表明该生态系统的年水分收支状况基本平衡,几乎所有的降水都以蒸散的形式消耗.  相似文献   

6.
干旱区绿洲膜下滴灌棉田蒸散过程   总被引:4,自引:0,他引:4  
水资源是干旱区农业发展最关键的限制因素。近年来,随着节水灌溉技术的发展,对缓解水资源供需矛盾、扩大灌溉面积起到了重要作用。理解非充分灌溉条件下的农田蒸散发过程,对于揭示农田水分循环和指导节水实践均具有重要的科学意义。本研究基于乌兰乌苏农业气象站2012年的涡度相关数据,分析了膜下滴灌棉田不同生育阶段的蒸散过程,通过FAO-56 Penman-Monteith方程估算参考作物蒸散量,在此基础上确定了干旱区绿洲膜下滴灌棉田的作物系数。结果表明:膜下滴灌棉田阶段蒸散耗水量和日蒸散强度在花铃期最大,阶段蒸散耗水量为248.51 mm,平均日蒸散强度为3.94 mm·d-1;蕾期次之,阶段蒸散耗水量为98.34 mm,平均日蒸散强度为3.78 mm·d-1;播种-出苗期最小,阶段蒸散耗水量为10.70 mm,平均日蒸散强度为1.07 mm·d-1;全生育期蒸散量为487.14 mm,平均作物系数为0.42;通过棉花不同生育阶段蒸散量和作物系数的确定,为棉花生育阶段不同灌溉时期和灌溉量的确定以及田间水分管理提供科学依据。  相似文献   

7.
水氮处理对冬小麦生长、产量和水氮利用效率的影响   总被引:5,自引:0,他引:5  
采用完全随机裂区设计,研究不同灌水(0、900、1200、1500 m3·hm-2)和施氮(0、90、150、210、270 kg·hm-2)处理对田间冬小麦生长、产量和水氮利用效率的影响.结果表明:冬小麦籽粒产量、氮素吸收量、氮肥利用效率和氮肥生产效率均随灌水量的增加而增加;氮肥利用效率和生产效率均随施氮量的增加而降低;施氮量在0~150 kg·hm-2时,冬小麦籽粒产量、氮吸收量和氮收获指数随施氮量增加而增加,超过150 kg·hm-2时不再显著增加;随灌水量的增加,冬小麦耗水量和整体水分利用效率增加,降水和土壤供水量占耗水量的比例及灌溉水利用效率降低;随施氮量的增加,降水和灌水量占耗水量的比例降低,土壤供水占耗水量的比例增加,整体水分利用效率和灌溉水利用效率先增加后降低,且均在施氮150、210和270 kg·hm-2处理间无显著差异.综合考虑各因素,本试验条件下,生育期灌水1500 m3·hm-2、施氮150 kg·hm-2的处理为产量和效益兼优的最佳水氮组合.  相似文献   

8.
为探明膜下滴灌土壤湿润范围对棉花根区水热环境及棉花根系耗水的影响,设置滴头流量1.69(W169)、3.46(W346)和6.33 L·h-1(W633)3个水平,观测分析了棉花生育期土壤基质势、土壤温度及棉花根系生长和耗水分布状况.结果表明: 膜下滴灌土壤温度主要受光照影响;不同类型土壤湿润区之间的土壤温度差异不明显,不同土壤湿润区的膜下土壤温度对棉花根系耗水也没有明显影响.但是随着土壤湿润区由窄深型向宽浅型过渡,棉花根区土壤基质吸力在水平方向上分布更趋于均匀,而棉花根系耗水强度主要受土壤基质吸力分布的影响.宽浅型土壤湿润区(W633)的棉花膜下内、边行根系耗水强度差值平均为0.67 mm·d-1,有利于内、边行棉株生长整齐;窄深型土壤湿润区(W169)的内、边行根系耗水强度差值平均为0.88 mm·d-1,不利于内、边行棉株均匀生长.可见,膜下滴灌技术设计中,土壤湿润区不应小于覆膜宽度,应使膜下土壤整体湿润.  相似文献   

9.
灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响   总被引:19,自引:4,他引:15  
在田间试验条件下,以小麦品种济麦20为材料,研究了不同灌水处理对小麦的耗水特性和氮素积累分配的影响.试验设置7个处理:不浇水(W0);拔节期和开花期浇水,每次灌水量为30mm(W1)、60mm (W2)、90mm(W3);拔节期、开花期和灌浆期浇水,每次灌水量为30mm(W4)、60mm (W5)、90mm(W6).研究结果表明:(1)随灌水量的增加,总耗水量逐渐增加,土壤耗水量和降水量占总耗水量的比例降低.产量和水分利用率最高的W2和W4处理总耗水量分别为413.87,362.15mm;灌溉量、降水量、土壤耗水量分别占总耗水量的比例为29%、36.34%、34.66%,24.85%、41.53%、33.62%;两个处理比较,W4处理提高了对降水的利用比例,但降低了对灌溉水的利用比例.通过对全生育期0~200cm不同土层土壤耗水量的研究得出,W0和W1处理的深层土壤耗水量较低,W3、W5、W6处理的0~200cm 每个土层土壤耗水量均较低,对W2和W4处理,小麦能够利用120~200cm的深层土壤水分,其土壤贮水消耗量显著增加.(2)W2处理的籽粒氮素积累量较高,W1、W4处理籽粒中的氮素分配比例显著高于其它处理,有灌浆水的处理,尤其是灌浆水高于30mm的处理,营养器官氮素转移率和贡献率显著降低;W4处理的籽粒蛋白质含量较高,W2和W4处理的籽粒蛋白质产量显著高于其它处理.(3)籽粒产量随着灌水量的增加先升高后降低,其中W2和W4处理显著高于其它处理;W4处理的产量水分利用效率和蛋白质产量水分利用率显著高于其它处理.结果表明,W4为本试验条件下高产节水的最佳灌水处理.  相似文献   

10.
不同小麦品种耗水特性和籽粒产量的差异   总被引:9,自引:0,他引:9  
Yan XM  Yu ZW  Zhang YL  Wang D 《应用生态学报》2011,22(3):694-700
在田间试验条件下,采用10个小麦品种,设全生育期不灌水(W0)、灌底墒水+拔节水(W1)、灌底墒水+拔节水+开花水(W2)3个处理,每次灌水量60 mm,研究不同小麦品种不同生育阶段的耗水特点和籽粒产量的差异.结果表明:以W0、W1和W2处理的小麦籽粒产量和水分利用效率(WUE)2因子为指标进行聚类分析,可将10个品种分为3组:高产高水分利用效率组(组Ⅰ)、高产中水分利用效率组(组Ⅱ)和中产低水分利用效率组(组Ⅲ).在W0处理下,组Ⅰ小麦品种的总耗水量、开花至成熟期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,籽粒产量最高;在W1处理下,组Ⅰ小麦品种拔节至开花期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,开花至成熟期的耗水量和耗水模系数在组Ⅰ、组Ⅱ和组Ⅲ间无显著差异;在W2处理下,组Ⅰ小麦品种的土壤供水量、拔节至开花期的耗水量和耗水模系数均低于组Ⅱ和组Ⅲ,开花至成熟期的耗水量和耗水模系数为组Ⅰ和组Ⅲ低于组Ⅱ.表明组Ⅰ高产高水分利用效率品种为最适宜品种,而底墒水和拔节水各灌60 mm的W1处理是兼顾高产与节水的最佳处理.  相似文献   

11.
为探明玉米秸秆还田下小麦的合理灌溉与施肥方法,于田间研究了漫灌(FI)、微喷灌(SI)、滴灌(DI)和灌水施氮模式(N1, 基施纯N 157.5 kg·hm-2+拔节期施纯N 67.5 kg·hm-2; N2, 基施纯N 157.5 kg·hm-2+拔节期施纯N 45.0 kg·hm-2+灌浆期施N 22.5 kg·hm-2)对土壤水分、硝态氮(NO3--N)含量和小麦生长发育的影响.结果表明: 灌溉方法和灌水施氮模式共同影响土壤含水量和贮水量的变化.其中,灌溉方法对越冬期和返青期0~60 cm、孕穗期和灌浆期0~160 cm、成熟期100~160 cm土层含水量影响相对较小,对越冬期和返青期80~160 cm、成熟期0~80 cm土层含水量影响大;FI对含水量和贮水量影响最大,DI次之,SI最小;SI和DI的灌水施氮模式中灌水量多,则土层含水量高、贮水量多,变化大.NO3--N含量受灌溉方法和施氮的影响,施氮对0~20 cm土层影响大,SI生育期NO3--N含量变化大,DI越冬期至孕穗期NO3--N含量变化小,此后变化大,FI与DI相反;生育前中期灌水量对NO3--N含量影响大,后期施氮对NO3--N含量影响大;SI和DI的2种灌水施氮模式中冬前灌水量多的NO3--N含量变化大.灌溉方法中SI越冬期总茎数和单株分蘖高,成穗率高,成穗数多,产量、水分利用效率(WUE)和氮素利用效率最高,滴灌次之,漫灌最低;SI和DI中N1生育期总茎数、成穗数多,但穗粒数和千粒重低,产量、WUE和氮素利用效率低于N2.因此,玉米秸秆还田后播种小麦,微喷灌代替漫灌生育期灌4水,施足基肥,拔节期和灌浆期分次追氮,是山西南部小麦-玉米一年两熟区小麦节水高产高效栽培模式.  相似文献   

12.
滴灌与沟灌栽培杨树人工林土壤水分动态与生产力   总被引:2,自引:0,他引:2  
在北京大兴区永定河故道沙地上对9年生杨树人工林进行滴灌和沟灌栽培,于根系主要分布土层(20、40、60、80 cm)布设土壤水分传感器并利用智能采集器实时监测土壤含水率,分析不同灌溉措施下的土壤水分动态变化及杨树人工林生产力。结果表明: 单次有效的滴灌和沟灌后,沿树行形成的湿润体垂直深度分别为72和143 cm,湿润体横切面的面积分别为0.41和2.71 m2;灌溉量分别为79.20和776.47 m3·hm-2,后者为前者的9.8倍,灌溉后杨树吸收根主要分布土层(0~40 cm)的土壤含水率下降到水分轻度亏缺临界值(土壤含水率为田间持水量的70%)的历时均为11 d左右。2019年4—10月,沟灌5、7、9月3次总灌溉量为2329.41 m3·hm-2;滴灌18次,总灌溉量为1425.60 m3·hm-2。沟灌下杨树人工林土壤水分中度亏缺(土壤含水率低于田间持水量的60%)累计天数达109 d,而滴灌下的杨树人工林土壤水分始终未发生中度亏缺。滴灌下杨树人工林蓄积年生长量为38.92 m3·hm-2,是沟灌(25.43 m3·hm-2)的1.5倍,表明不同灌溉措施下杨树人工林生产力差异显著。  相似文献   

13.
采用自动式遮雨棚水分精量控制试验研究了交替地下滴灌条件下不同灌溉定额对春玉米产量和水分利用效率的影响.结果表明:交替地下滴灌春玉米需水关键时期为拔节-抽雄期、抽雄-灌浆期,具体表现为耗水模系数与耗水强度大,且对水分敏感性高,在灌溉条件有限的情况下要优先满足春玉米这两个时期的水分需求.随着灌溉定额的增加,产量呈现增加趋势;灌溉定额小于2764.5 m3·hm-2时产量随灌溉定额增加快速增加,大于2764.5 m3·hm-2时产量随灌溉定额增加缓慢增加;当灌溉定额为3357.1 m3·hm-2时产量最高,达12109.0 kg·hm-2.与固定地下滴灌相比,在灌溉定额相同条件下,交替地下滴灌产量提高5.4%,水分利用效率提高1.4%,灌溉水利用效率提高5.6%.与固定地下滴灌相比,灌溉定额减少20%时,交替地下滴灌虽然产量下降1.8%,但水分利用效率提高11.0%,灌溉水利用效率提高22.7%.综合考虑产量、水分利用效率两个指标,确定试验区春玉米交替地下滴灌的适宜灌溉定额为1600.4~3357.1 m3·hm-2.  相似文献   

14.
不同施氮水平下灌水量对小麦水分利用特征和产量的影响   总被引:10,自引:3,他引:7  
在田间高产条件下,研究了不同施氮水平[180 kg·hm-2(N180)和240 kg·hm-2(N240)]下灌水量对小麦耗水特征和旗叶水分生理特性及产量的影响.结果表明:不灌水的W0处理100 cm以下土层的土壤贮水消耗量低于各灌水处理,W1(灌底墒水60 mm)和W2(灌底墒水和拔节水各60 mm)处理100~200 cm土层和0~200 cm土层土壤贮水消耗量高于W3(灌底墒水、拔节水和开花水各60 mm)处理;N240处理0~80 cm土层土壤贮水消耗量、开花至成熟阶段耗水模系数和农田耗水量高于N180. W2和W3处理灌浆中后期旗叶相对含水量和水势高于W0和W1处理;灌浆后期旗叶相对含水量和水势为N240W0和N240W1处理分别高于N180W0和N180W1处理,N240W2和N240W3处理与N180W2和N180W3处理之间无显著差异.施氮180 kg·hm-2,底墒水和拔节水分别灌60 mm的W2处理籽粒产量、水分和氮素利用效率高,农田耗水量较低;增加灌水量,籽粒产量无显著变化,农田耗水量增高,土壤贮水消耗量、水分利用效率、灌溉水利用效率和灌溉效益降低.  相似文献   

15.
为明确协同提高冬小麦产量和水分利用效率的适宜灌水量和种植密度,选用大穗型品种‘泰农18’(T18)和中穗型品种‘山农22’(S22)为试验材料,设置4个灌溉水平(不灌水、每次灌水45、60、75 mm)和4个种植密度,其中泰农18选用135×104、270×104、405×104、540×104 株·hm-2,山农22选用90×104、180×104、270×104、360×104株·hm-2,研究了籽粒产量、麦田耗水特性和水分利用效率对灌水量和密度互作效应的响应。结果表明: 籽粒产量、总耗水量、土壤贮水消耗量和水分利用效率均受到灌溉水平、种植密度及两者互作效应的显著影响。每次灌水量为45 mm,泰农18种植密度为405×104株·hm-2、山农22种植密度为270×104株·hm-2时,两品种籽粒产量均达到最高,拔节后棵间蒸发量占阶段农田总耗水量的比例最小,1 m以下土壤水消耗比例、水分利用效率高。种植密度与灌溉量合理组合,有利于降低水分无效损耗,提高水分利用效率。  相似文献   

16.
水氮供应对夏棉产量、水氮利用及土壤硝态氮累积的影响   总被引:6,自引:0,他引:6  
通过田间试验,研究了黄淮地区水氮供应对夏棉生长、产量及水氮利用效率的影响,探索在保证产量的同时提高水氮利用效率、减少农田水氮排放的管理模式.试验设置5个氮素水平(0、60、120、180、240 kg·hm-2,分别记为N0、N1、N2、N3、N4)和3个灌水水平(滴灌,灌水定额30、22.5、15 mm,分别记为I1、I2、I3),使用裂区设计,主区为氮用量,裂区为灌水水平,共15个处理,3次重复.结果表明: 氮素和水分施用对夏棉生长和产量都有明显促进作用,但氮素影响更显著,是该地区调控夏棉生长和籽棉产量的主要因素.随着施氮量和灌水量的增加,花铃期生殖器官积累量、地上部干物质积累量和籽棉产量在开始阶段都逐步增加,当施氮量超过180 kg·hm-2时,进一步增施氮肥会导致生殖器官积累量、地上部干物质积累量和籽棉产量减小.籽棉产量在N3I1处理达到最大,为4016 kg·hm-2.增加施氮量能显著提高地上部总吸氮量和茎叶含氮量,但会降低氮肥偏生产力.灌溉水利用效率和田间水分利用效率分别在N3I3和N3I1处理最大,分别为5.40和1.24 kg·m-3.随着施氮量的增加,土壤硝态氮含量明显增加,且硝态氮累积区域有下移趋势.综合考虑对地上部干物质积累、产量、水氮吸收利用及土壤硝态氮累积等的影响,N3I1处理可作为试验区夏季棉花生产的最优水氮管理方案.  相似文献   

17.
不同滴灌方式下棉花生物量和产量的水氮调控效应   总被引:1,自引:0,他引:1  
李培岭  张富仓 《应用生态学报》2010,21(11):2814-2820
通过3个水平的灌水量和施氮量(低、中、高)的田间试验,研究了田间不同滴灌方式下棉花生物量和产量的水氮调控效应.结果表明:在1带4行、2带4行、2带6行滴灌模式下灌水量由低(分别为90、140、140 mm)到中(分别为150、200、200 mm)时,地上部干物质量分别提高9.2%、37.9%和23.5%,籽棉产量分别提高19.1%、14.1%和16.0%;灌水量由中到高(分别为210、260、260 mm)时,地上部干物质量分别提高15.8%、19.1%和16.7%,籽棉产量分别提高7.7%、11.2%和9.5%.施氮量由低(67.6 kg·hm-2)到中(95.2 kg·hm-2)时,地上部干物质量2带4行模式提高14.3%,籽棉产量1带4行模式提高22.2%,其他模式无显著变化;施氮量由中到高(122.8 kg·hm-2)时,籽棉产量3种模式分别提高7.4%、13.9%和9.9%,地上部干物质量无显著变化.与1带4行和2带6行模式相比,2带4行模式地上部干物质量和籽棉产量的水氮调控效应更明显,相同水氮处理下2带4行地上部干物质量和籽棉产量均高于2带6行和1带4行.表明2带4行是最有利于滴灌棉花田间水氮管理的模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号