首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.  相似文献   

3.
多肽噬菌体展示   总被引:4,自引:2,他引:2  
噬菌体展示技术已被广泛地应用于生物学研究的各个方面.利用它可融合表达多肽、蛋白质结构域和蛋白质.尤其是多肽噬菌体展示,已被作为一种便利的研究工具去发现和研究那些与受体、酶、凝集素、抗体、核酸以及其他生物分子亲和的多肽配基和酶的底物专一性,该技术在药物的发现,疫苗的设计等医学领域也有着潜在的应用价值.  相似文献   

4.
5.
Somers K  Stinissen P  Somers V 《Proteomics》2011,11(12):2550-2554
Phage display is a high-throughput technology used to identify ligands for a given target. A drawback of the approach is the absence of PTMs in phage-displayed peptides. The applicability of phage display could be broadened considerably by the implementation of PTMs in this system. The aim of this study was to investigate the possible application of citrullination, a PTM of an arginine into a citrulline amino acid, in filamentous (M13) and lytic (T7) phage display. After in vitro citrullination of T7 and M13 phages, citrullination was confirmed and the infectivity of both citrullinated and non-citrullinated phage was compared by titer determination. We demonstrated the successful in vitro citrullination of T7 and M13 phage-displayed peptides. This in vitro modification did not affect the viability or infectivity of the T7 virions, a necessary prerequisite for the implementation of this approach in T7 phage display. For M13 phage, however, the infecting phage titer decreased five-fold upon citrullination, limiting the use of this modification in M13 phage display. In conclusion, in vitro citrullination can be applied in T7 phage display giving rise to a high-throughput and sensitive approach to identify citrulline-containing ligands by the use of the strengths of phage display technology.  相似文献   

6.
杜东霞  张冉 《微生物学通报》2009,36(2):0261-0266
噬菌体展示技术是一种将外源肽或蛋白质与特定噬菌体衣壳蛋白相融合,展示于噬菌体表面来构建蛋白质或多肽文库,并从中筛选目的蛋白、多肽或抗体的基因工程高新技术。噬菌粒/辅助噬菌体系统是最常用的噬菌体展示系统,此系统中辅助噬菌体对噬菌粒的复制和组装发挥着至关重要的作用。本文结合当今该领域的最新研究动态,概述了噬菌粒和辅助噬菌体双基因组系统,着重介绍了不同辅助噬菌体的特点及其突变机制,并对其应用前景进行了展望,以期为该技术的进一步完善提供一定的借鉴作用。  相似文献   

7.
噬菌体短肽库是将随机合成的寡核苷酸序列通过与单链噬菌体外壳蛋白基因融合,从而将随机短肽表达于噬菌体的表面。将体外随机化学合成的寡聚核苷酸序列重组到单价噬菌体表达载体,构建了噬菌体短肽库,证明其库容为2×10 ̄7集落形成单位(cfu),重组率为93%。同时将11个随机克隆进行序列测定,证实其寡聚核苷酸序列和氨基酸的分布几乎是完全随机的,其多样性可以满足特异性短肽筛选的要求。  相似文献   

8.
Phage display has emerged as a powerful technique for mapping epitopes recognised by monoclonal and polyclonal antibodies. We have recently developed a simple gene-fragment phage display system and have shown its utility in mapping epitope recognised by a monoclonal antibody. In the present study, we have employed this system in mapping epitopes recognised by polyclonal antibodies raised against HIV-1 capsid protein, p24 which is derived from proteolytic cleavage of Gag polyprotein. HIV-1 gag DNA was fragmented by DNase I and the fragments (50–250 bp) were cloned into gene-fragment phage display vector to construct a library of phages displaying peptides. This phage library was used for affinity selection of phages displaying epitopes recognised by rabbit anti-p24 polyclonal antibodies. Selected phages contained sequences from two discrete regions of p24, demonstrating the presence of two antigenic regions.

The DNA sequences encoding these regions were also cloned and expressed as GST fusion proteins. The immunoreactivity of these epitopes as GST fusion proteins, or as phage-displayed peptides, was comparable in ELISA system using same anti-p24 polyclonal antibodies. The results indicate that the gene-fragment based phage display system can be used efficiently to identify epitopes recognised by polyclonal antibodies, and phage displayed epitopes can be directly employed in ELISA to detect antibodies.  相似文献   

9.
Phage presentation   总被引:1,自引:0,他引:1  
There has recently been great interest in the use of the filamentous bacteriophage fd as a vehicle for the display of peptides and proteins. Phage libraries displaying random peptides up to 38 amino acids in length can be used (i) to select for ligands able to bind specific target molecules; (ii) to mimic non-proteinaceous ligands; and (iii) as a tool to map epitopes recognized by antibodies. The display of proteins or their functional domains provides a system for the analysis of structure-function relationships, and the potential to generate proteins with altered binding characteristics or novel catalytic properties. The display of short immunogenic determinants on fusion phage may provide a basis for the development of novel peptide vaccines, whilst the expression of libraries of antibody fragments may provide a method to by-pass hybridoma technology in the generation of monoclonal antibodies.  相似文献   

10.
Selection of phage libraries against complex living targets such as whole cells or organs can yield valuable targeting ligands without prior knowledge of the targeted receptor. Our previous studies have shown that noninfective multivalent ligand display phagemids internalize into mammalian cells more efficiently than their monovalent counterparts suggesting that cell-based selection of internalizing ligands might be improved using multivalently displayed peptides, antibodies or cDNAs. However, alternative methods of phage recovery are needed to select phage from noninfective libraries. To this end, we reasoned that rolling circle amplification (RCA) of phage DNA could be used to recover noninfective phage. In feasibility studies, we obtained up to 1.5 million-fold enrichment of internalizing EGF-targeted phage using RCA. When RCA was applied to a large random peptide library, eight distinct human prostate carcinoma cell-internalizing peptides were isolated within three selection rounds. These data establish RCA as an alternative to infection for phage recovery that can be used to identify peptides from noninfective phage display libraries or infective libraries under conditions where there is the potential for loss of phage infectivity.  相似文献   

11.
MOTIVATION: The phage display peptide selection approach is widely used for defining binding specificities of globular domains. PDZ domains recognize partner proteins via C-terminal motifs and are often used as a model for interaction predictions. Here, we investigated to which extent phage display data that were recently published for 54 human PDZ domains can be applied to the prediction of human PDZ-peptide interactions. RESULTS: Promising predictions were obtained for one-third of the 54 PDZ domains. For the other two-thirds, we detected in the phage display peptides an important bias for hydrophobic amino acids that seemed to impair correct predictions. Therefore, phage display-selected peptides may be over-hydrophobic and of high affinity, while natural interaction motifs are rather hydrophilic and mostly combine low affinity with high specificity. We suggest that potential amino acid composition bias should systematically be investigated when applying phage display data to the prediction of specific natural domain-linear motif interactions.  相似文献   

12.
Bacteriophage lambda (λ) permits the display of many foreign peptides and proteins on the gpD major coat protein. However, some recombinant derivatives of gpD are incompatible with the assembly of stable phage particles. This presents a limitation to current λ display systems. Here we describe a novel, plasmid-based expression system in which gpD deficient λ lysogens can be co-complemented with both wild-type and recombinant forms of gpD. This dual expression system permits the generation of mosaic phage particles that contain otherwise recalcitrant recombinant gpD fusion proteins. Overall, this improved gpD display system is expected to permit the expression of a wide variety of peptides and proteins on the surface of bacteriophage λ and to facilitate the use of modified λ phage vectors in mammalian gene transfer applications.  相似文献   

13.
Mutation in the tubby gene causes adult‐onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby‐like protein 1 (Tulp1), whose C‐terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N‐terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N‐terminus (tubby‐N) as bait to identify unknown binding proteins with open‐reading‐frame (ORF) phage display. T7 phage display was engineered with three improvements: high‐quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait‐binding proteins in as fast as ~4–7 days. While phage display with conventional cDNA libraries identifies high percentage of out‐of‐frame unnatural short peptides, all 28 tubby‐N‐binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two‐hybrid assay and protein pull‐down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby‐specific binding protein. These data suggest that tubby‐N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly‐engineered ORF phage display is a powerful technology to identify unknown protein–protein interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Directed protein-evolution strategies generally make use of a link between a protein and the encoding DNA. In phage-display technology, this link is provided by fusion of the protein with a coat protein that is incorporated into the phage particle containing the DNA. Optimization of this link can be achieved by adjusting the signal sequence of the fusion. In a previous study, directed evolution of signal sequences for optimal display of the Taq DNA polymerase I Stoffel fragment on phage yielded signal peptides with a 50-fold higher incorporation of fusion proteins in phage particles. In this article, we show that for one of the selected signal sequences, improved display on phage can be generalized to other proteins, such as adenylate cyclases from Escherichia coli and Bordetella pertussis, and that this is highly dependent on short sequences at the C-terminus of the signal peptide. Further, the display of two enzymes on phage has been achieved and may provide a strategy for directing coevolution of the two proteins. These findings should be useful for display of large and cytoplasmic proteins on filamentous phage.  相似文献   

16.
Phage display is a key technology for the identification and maturation of high affinity peptides, antibodies, and other proteins. However, limitations of bacterial expression restrict the range and sensitivity of assays that can be used to evaluate phage-selected variants. To address this problem, selected genes are typically transferred to mammalian expression vectors, a major rate-limiting step in the iterative improvement of peptides and proteins. Here we describe a system that combines phage display and efficient mammalian expression in a single vector, pDQ1. This system permits immediate expression of phage-selected genes as IgG1-Fc fusions in mammalian cells, facilitating the rapid, sensitive characterization of a large number of library outputs for their biochemical and functional properties. We demonstrate the utility of this system by improving the ability of a CD4-mimetic peptide to bind the HIV-1 envelope glycoprotein and neutralize HIV-1 entry. We further improved the potency of the resulting peptide, CD4mim6, by limiting its ability to induce the CD4-bound conformation of the envelope glycoprotein. Thus, CD4mim6 and its variants can be used to investigate the properties of the HIV-1 envelope glycoprotein, and pDQ1 can accelerate the discovery of new peptides and proteins through phage display.  相似文献   

17.
Phage display: practicalities and prospects   总被引:26,自引:0,他引:26  
Phage display is a molecular technique by which foreign proteins are expressed at the surface of phage particles. Such phage thereby become vehicles for expression that not only carry within them the nucleotide sequence encoding expressed proteins, but also have the capacity to replicate. Using phage display vast numbers of variant nucleotide sequences may be converted into populations of variant peptides and proteins which may be screened for desired properties. It is now some seventeen years since the first demonstration of the feasibility of this technology and the intervening years have seen an explosion in its applications. This review discusses the major uses of phage display including its use for elucidating protein interactions, molecular evolution and for the production of recombinant antibodies.  相似文献   

18.
An ephrin mimetic peptide that selectively targets the EphA2 receptor   总被引:4,自引:0,他引:4  
Eph receptor tyrosine kinases represent promising disease targets because they are differentially expressed in pathologic versus normal tissues. The EphA2 receptor is up-regulated in transformed cells and tumor vasculature where it likely contributes to cancer pathogenesis. To exploit EphA2 as a therapeutic target, we used phage display to identify two related peptides that bind selectively to EphA2 with high affinity (submicromolar K(D) values). The peptides target the ligand-binding domain of EphA2 and compete with ephrin ligands for binding. Remarkably, one of the peptides has ephrin-like activity in that it stimulates EphA2 tyrosine phosphorylation and signaling. Furthermore, this peptide can deliver phage particles to endothelial and tumor cells expressing EphA2. In contrast, peptides corresponding to receptor-interacting portions of ephrin ligands bind weakly and promiscuously to many Eph receptors. Bioactive ephrin mimetic peptides could be used to selectively deliver agents to Eph receptor-expressing tissues and modify Eph signaling in therapies for cancer, pathological angiogenesis, and nerve regeneration.  相似文献   

19.
20.
We cloned and expressed the SH2 domain of human GRB2 as glutathione S-transferase and maltose binding protein fusion proteins. We screened three phagemid-based fd pVIII-protein phage display libraries against SH2 domain fusion proteins. Sequence analysis of the peptide extensions yielded a variety of related peptides. By examining the ability of the phage clones to bind other SH2 domains, we demonstrated that the phage were specific for the SH2 domain of GRB2. Based on the sequence motif identified in the "random" library screening experiment, we also built and screened a phage display library based on a Tyr-X-Asn motif (X5-Tyr-X-Asn-X8). To examine the affinity of the phage derived peptides for GRB2, we set up a radioligand competition binding assay based on immobilized GRB2 and radiolabelled autophosphorylated EGFR ICD as the radioligand. Results obtained with peptide competitors derived from the phage sequences demonstrated that nonphosphotyrosine-containing peptides identified with the phage display technology had an affinity for the receptor similar to tyrosine-phosphorylated peptides derived from the EGFR natural substrate. Interestingly, when the phage display peptides were then phosphorylated on tyrosine, their affinity for GRB2 increased dramatically. We also demonstrated the ability of the peptides to block the binding of the GRB2 SH2 domain to EGFR in a mammalian cell-based binding assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号