首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 170 毫秒
1.
荒漠草原区地上净初级生产力和土壤呼吸对降水变化的不同响应 降水变化既影响地上植被动态,也影响地下碳循环过程,尤其以干旱半干旱生态系统对降水的响应更为敏感。然而极端降水如何影响土壤碳固存潜力仍未得出明确结果。本研究在黄土高原西部荒漠草原样地实施了为期3年的降水控制实验,该实验包含5个降水梯度(即自然降水(对照),以及在自然降水基础上的减水40%、减水20%、增水20%、增水40%)。通过对不同降水处理下植物生长指标、地上净初级生产力(ANPP)、土壤水分和土壤呼吸(Rs)进行监测,采用双侧不对称模型揭示ANPP和Rs对降水变化的响应规律;采用结构方程模型,分析降水变化下影响ANPP和Rs的直接和间接因素。研究结果表明,ANPP对极端干旱的响应比极端湿润更敏感,在干旱和湿润年份均符合负向不对称模型。ANPP的变化主要受到降水的直接影响,同时,干旱年份植物密度的变化也对ANPP产生了影响。在湿润年份,Rs对降水变化的响应也呈负向不对称性。然而,干旱年份,Rs对降水变化表现出正向不对称响应,即对降水增加响应的敏感性高于降水减少,这可能与植物生长和ANPP对增水处理的正响应增加使自氧呼吸增强,及降水事件对异氧呼吸具有较强的‘Birch效应’有关。在干旱年份Rs对极端干旱(减水40%处理)表现出饱和响应。ANPP和Rs对降水格局改变的响应模式差异表明荒漠草原区极端湿润或干旱可能降低研究区土壤碳固存的潜力。  相似文献   

2.
比较了沿 1 6 70km长的中国东北样带 (NECT)分布的在繁殖习性上不同的植物功能型 ,克隆植物 (clonalplant)与非克隆植物 (non_clonalplant)的光合作用、蒸腾作用、气孔导度、水分利用效率。所测定的 2 1 8种植物中有1 1 5种属于克隆植物。对于灌木和草本植物功能型而言 ,净光合速率 (Pn)和水分利用效率 (WUE)在样带东西两端较低 ,在样带中间较高 ;蒸腾速率在温带荒漠植物分布的西端出现升高的趋势。在森林乔木、森林灌木、森林草本、草甸草原灌木、草甸草原草本、典型草原灌木、典型草原草本、荒漠草原灌木、荒漠草原草本等不同功能型的植物中 ,典型草原灌木和草本植物的光合生理指标较高。在相同的生长环境中 ,克隆植物比非克隆植物表现出较高的Pn 以及其他生理指标。克隆植物的光合速率、蒸腾速率、气孔导度、水分利用效率分别比非克隆植物高出 2 2 %、1 5 %、2 3%和 1 4 %。这种现象表明克隆植物在CO2 、光能和水分资源利用能力上优于非克隆植物  相似文献   

3.
赵平  彭少麟  曾小平 《广西植物》2001,21(4):287-294
大气 CO2 浓度升高所引起的森林生态系统生态稳定性的变化会导致森林在结构和功能上的变动。概述了全球变化背景下大气 CO2 浓度升高和陆地森林生态系统可能性变化之间的相互关系的研究情况。由于大气 CO2 浓度升高出现了额外多的 C供应 ,讨论了以这些额外多的 C经大气—植物—土壤途径的流动走向来研究大气 CO2 浓度的升高与森林结构和功能的相互作用 ,探讨了大气 CO2 浓度升高对森林植物生长、冠层结构、引发的生物量增量的分配、凋落物质量和根质量的变化造成的土壤生态过程的变化、微生物共生体、有机质周转率以及营养循环的潜在效应 ,这些受影响的生物要素和生态过程会引起群落内植物间对资源原有的竞争关系发生变化 ,对资源竞争的格局发生变化最终将会导致森林结构和功能的改变。还提出了一个假设性的概念性框架 ,描述大气 CO2 升高引起的森林结构和功能变化的内在机理。  相似文献   

4.
大气CO_2浓度升高与森林群落结构的可能性变化   总被引:1,自引:0,他引:1  
大气 CO2 浓度升高所引起的森林生态系统生态稳定性的变化会导致森林在结构和功能上的变动 ,概述了大气 CO2浓度升高和陆地森林生态系统可能性变化之间的相互关系的研究情况。由于大气 CO2 浓度升高出现了额外多的 C,供应 ,讨论了以这些额外多的 C经大气 -植物 -土壤途径的流动走向 ,来研究大气 CO2 浓度的升高 ,与森林结构的相互作用 ,探讨了大气 CO2 浓度升高对森林植物生长、冠层结构、引发的生物量增量的分配、凋落物质量和根质量的变化造成的土壤生态过程的变化、微生物共生体、有机质周转率、营养循环的潜在效应以及气温上升对森林植物产生的可能性影响 ,这些受影响的生物要素和生态过程 ,会引起群落内植物间对资源原有的竞争关系发生变化 ,对资源竞争的格局发生变化最终将会导致森林结构的改变。  相似文献   

5.
大气CO2浓度升高对植物根系的影响   总被引:3,自引:0,他引:3  
植物长期生长在CO2浓度不断升高的环境中,其结构和功能都将受到影响,这种影响不仅表现在植物的地上部分,同时也表现在植物的地下部分(根系),尤其是细根的长度、直径、产量、周转以及根与枝的分配模式等方面。植物根系结构和功能的改变影响植物地上部分和生态系统物质循环中的碳动态及土壤中碳库的变化。目前有关大气CO2浓度升高对根系动态影响的研究报道主要包括大气CO2浓度升高对根系结构(直径、分枝、长度、数量等)和根系生理(周转率、产量、碳分配模式等)的影响2个方面。目前,该领域研究还存在一些不足,例如在CO2浓度升高条件下,对植物根系内部的调控机制,以及由其引起的物质循环和能量流动的动态变化的了解较少;至今没有令人信服的证据说明大气CO2浓度升高使根系周转升高还是降低。今后应加强研究在CO2浓度升高条件下根系的周转变化和光合产物分配模式变化,CO2浓度升高和外界环境因素的共同作用对根系的影响,以及采用不同研究方法和研究对象在不同立地条件下开展升高CO2浓度对根系影响的对比研究等。  相似文献   

6.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

7.
气候变化下西南地区植物功能型地理分布响应   总被引:1,自引:0,他引:1  
以中国西南地区(云南、贵州、四川和重庆)为研究区,基于中国植被图划分植物功能型,筛选影响各植物功能型分布的主导环境因子,进而通过最大熵模型结合未来气候情景(2050年)预测西南地区植物功能型地理分布。结果表明:(1)根据植物冠层特征(针叶/阔叶、常绿/落叶)及对水分和温度的需求,结合研究区实际植被数据,筛选得到15类植物功能型,包含6类乔木、6类灌木和3类草本功能型;(2)影响西南地区热带乔木分布的主导因子为最冷月最低温度和年降水量(贡献率达90.3%),亚热带植物功能型分布主要受到温度变化影响(贡献率达41.7%),温带植物功能型则受降水因子的影响最大(贡献率约40.1%),高寒草甸草和高寒常绿阔叶灌木主要受温度和海拔因子影响,高寒落叶阔叶灌木受降水因子影响大;(3)随CO_2排放量增加,未来西南各植物功能型分布呈现不同变化,其中,热带常绿阔叶乔木适宜区逐渐扩大;亚热带落叶木本类植物功能型的高适宜区面积2050年(RCP8.5)增至10.3%,呈东移趋势;亚热带常绿木本和草本类植物功能型适宜区广(占研究区总面积86.5%),未来气候下分布呈不规则波动;温带植物功能型(除温带灌木类外)适宜区面积减小至2050年(RCP8.5)的13.6%;温带常绿针叶灌木适宜区面积增大,2050年(RCP2.6)高适宜区向西移动且面积增至当前的8.25倍;高寒类植物功能型适宜区面积则呈缩小趋势,高适宜区东移。  相似文献   

8.
利用CENTURY模型对内蒙古锡林河流域羊草草原在未来气候变化以及大气CO2浓度增高条件下的年地上净初级生产力(annual aboveground net primary productivity,ANPP)动态进行了模拟研究.结果表明:CENTURY模型可以较好地预测ANPP的变化.进一步的情景模拟发现,虽然全球气候变化所引起的温度和降水改变、以及大气CO2浓度升高都会影响ANPP,但降水是关键的影响因子.多个全球气候模型(GCM) 预测该地区未来降水量会减少,故可能导致其ANPP降低,但在以下气候变化情景下研究区ANPP可能会升高:1)CO2浓度倍增,温度升高2 ℃,降水保持不变或增加10%~20%;2)CO2浓度保持不变,温度升高2 ℃,降水增加20%.气候变化将对内蒙古锡林河流域羊草草原产生显著影响.  相似文献   

9.
石耀辉  周广胜  蒋延玲  王慧  许振柱 《生态学报》2013,33(14):4478-4485
关于二氧化碳(CO2)浓度和降水等单因子变化对植物生长的影响研究已很多,但多因子协同作用的影响研究仍较少,制约着植物对全球变化响应的综合理解与预测.利用开顶式生长箱(OTC)模拟研究了CO2浓度升高(450和550 μmol/mol)和降水量变化(-30%、-15%、对照、+15%和+30%)的协同作用对荒漠草原优势植物短花针茅(Stipa breviflora)生长特性的影响.结果表明:550 μmol/mol CO2浓度下短花针茅植株的生物量和叶面积较对照显著增加,但450 μmol/mol CO2浓度下的变化不明显;降水增多导致植株生物量、叶面积、叶数和株高显著增加;CO2浓度与降水协同作用显著影响短花针茅植株生物量.CO2浓度升高在一定程度上缓解了降水减少对短花针茅的胁迫效应,但降水量减少3O%则明显抑制了CO2浓度升高带来的效应.研究结果有助于增进荒漠草原植物对未来气候变化的适应性理解,可为制定荒漠草原应对气候变化的对策提供依据.  相似文献   

10.
降水变化与CO2浓度升高将严重影响陆地生态系统尤其是草地生态系统,阐明干旱半干旱区草原优势植物对降水与CO2浓度变化的联合响应有助于理解和准确评估未来气候变化对草地生态系统的影响.基于开顶式生长箱(OTC),模拟研究了降水变化(-30%、-15%、0、+15%、+30%(以1978-2007年月降水平均值为基准))、CO2浓度变化(对照、450 μmol·mol-1、550 μmol·mol-1)及其协同作用对荒漠草原优势物种短花针茅(Stipa breviflora)光合特性的影响.结果表明:降水变化和CO2浓度升高对短花针茅光合参数影响显著,表现出显著的交互作用.随着CO2浓度升高,短花针茅叶片净光合速率(Pn)呈增加趋势,但随着时问延长(8月份)显示出光合适应现象;气孔导度(Gs)和蒸腾速率(Tr)则呈下降趋势,水分利用效率(WUE)显著增加.随着降水增加,短花针茅的Pn、Gs和Tr均呈增加趋势,Pn增加速率小于Tr,使得WUE降低.高浓度CO2和降水增加15%的协同作用可以显著提高短花针茅的Pn、Gs和Tr,但Pn增加速率接近于Tr,导致WUE变化不显著.这表明,在干旱半干旱地区,CO2浓度升高可在一定程度上提高短花针茅的抗旱能力,增强短花针茅对暖干化气候情景的适应性.  相似文献   

11.
侯向阳  纪磊  王珍 《生态学报》2014,34(21):6256-6264
不同草原利用方式正在影响着内蒙古的草原生态系统,而且在未来降水空间格局变化的背景下,它们共同决定了生态系统植被类型、净初级生产力(NPP)和生态系统碳积累。选取内蒙古中部两个重要的草地类型:荒漠草原和典型草原,研究不同草原利用方式(围栏禁牧、划区轮牧、割草、自由放牧)植物群落在降雨量不同的两个生长季节地上(ANPP)、地下净初级生产力(BNPP)的变化,同时也评估了植物群落的碳积累,研究结果表明:1)在降雨量亏缺年份,与围封相比,荒漠草原自由放牧区ANPP、BNPP及碳积累分别下降了57.1%、51.7%和56.0%,而典型草原自由放牧区分别下降了18.4%、25.1%和17.9%。2)在降雨量充足年份,与围封相比,荒漠草原划区轮牧区ANPP、BNPP以及碳积累分别增加了18.2%、9.8%和21.9%,而典型草原各处理下围封禁牧区ANPP仍是最高;3)两种草地类型下,降雨量对自由放牧的调控作用高于其它草地利用方式;4)荒漠草原ANPP在丰雨年是欠雨年的2倍,而典型草原仅增加了79.0%,降雨量对荒漠草原生产力的季节调控作用远高于典型草原。在未来全球气候变暖和降水格局变化的情况下,荒漠草原降雨量是影响荒漠植物群落NPP和碳积累的主导因子。  相似文献   

12.
During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization, and partitioning influence the responsiveness of these desert shrubs during long-term exposure to elevated [CO(2)].  相似文献   

13.
Abstract Urban ecosystems are profoundly modified by human activities and thereby provide a unique “natural laboratory” to study potential ecosystem responses to anthropogenic environmental changes. Because urban environments are now affected by urban heat islands, carbon dioxide domes, and high-level nitrogen deposition, to some extent they portend the future of the global ecosystem. Urbanization in the metropolitan region of Phoenix, Arizona (USA) has resulted in pronounced changes in air temperature (T air), atmospheric CO2 concentration, and nitrogen deposition (Ndep). In this study, we used a process-based ecosystem model to explore how the Larrea tridentata dominated Sonoran Desert ecosystem may respond to these urbanization-induced environmental changes. We found that water availability controls the magnitude and pattern of responses of the desert ecosystem to elevated CO2, air temperature, N deposition and their combinations. Urbanization effects were much stronger in wet years than normal and dry years. At the ecosystem level, aboveground net primary productivity (ANPP) and soil organic matter (SOM) both increased with increasing CO2 and Ndep individually and in combinations with changes in T air. Soil N (Nsoil) responded positively to increased N deposition and air temperature, but negatively to elevated CO2. Correspondingly, ANPP and SOM of the Larrea ecosystem decreased along the urban–suburban–wildland gradient, whereas Nsoil peaked in the suburban area. At the plant functional type (FT) level, ANPP generally responded positively to elevated CO2 and Ndep, but negatively to increased T air. C3 winter annuals showed a greater ANPP response to higher CO2 levels (>420 ppm) than shrubs, which could lead over the long term to changes in species composition, because competition among functional groups is strong for resources such as soil water and nutrients. Overall, the combined effects of the three environmental factors depended on rainfall variability and nonlinear interactions within and between plant functional types and environmental factors. We intend to use these simulation results as working hypotheses to guide our field experiments and observations. Experimental testing of these hypotheses through this process should improve our understanding of urban ecosystems under increasing environmental stresses.  相似文献   

14.
Concomitant changes of annual precipitation and its seasonal distribution within the context of global climate change have dramatic impacts on aboveground net primary productivity (ANPP) of grassland ecosystems. In this study, combining remote sensing products with in situ measurements of ANPP, we quantified the effects of mean annual precipitation (MAP) and precipitation seasonal distribution (PSD) on the spatial variations in ANPP along a climate gradient in Eurasian temperate grassland. Our results indicated that ANPP increased exponentially with MAP for the entire temperate grassland, but linearly for a specific grassland type, i.e. the desert steppe, typical steppe, and meadow steppe from arid to humid regions. The slope of the linear relationship appeared to be steeper in the more humid meadow steppe than that in the drier typical and desert steppes. PSD also had significant effect on the spatial variations in ANPP. It explained 39.4% of the spatial ANPP for the entire grassland investigated, being comparable with the explanatory power of MAP (40.0%). On the other hand, the relative contribution of PSD and MAP is grassland type specific. MAP exhibited a much stronger explanatory power than PSD for the desert steppe and the meadow steppe at the dry and wet end, respectively. However, PSD was the dominant factor affecting the spatial variation in ANPP for the median typical steppe. Our results imply that altered pattern of PSD due to climate change may be as important as the total amount in terms of effects on ANPP in Eurasian temperate grassland.  相似文献   

15.
Mean annual precipitation accounts for a large proportion of the variation in mean above‐ground net primary production (ANPP) of grasslands worldwide. However, the inter‐annual variation in production in any grassland site is only loosely correlated with precipitation. The longest record of variation in production and precipitation for a site corresponds to a shortgrass steppe in Colorado, USA. A previous study of this record showed that current‐year precipitation accounted for 39% of the inter‐annual variation in ANPP. In this note, we show that ca. one third of the unexplained variation is related to previous‐year ANPP: ANPP per mm of precipitation was higher in years preceded by wet, more productive years than in years preceded by average years; similarly, ANPP per mm of precipitation was lower in years preceded by dry, less productive years than in years preceded by average years. Since previous‐year ANPP was, in turn, associated with precipitation of a year before, current‐year ANPP was also explained by precipitation of two previous years. Our finding not only increases our predictive ability, but it also changes our understanding of how ANPP responds to fluctuations in precipitation. If ANPP is thought to vary according to current‐year precipitation only, it will simply track annual precipitation in time. According to this new result, however, ANPP fluctuations are buffered if wet, more productive years alternate with dry, less productive years, and they are amplified if wet or dry sequences of several years take place.  相似文献   

16.
Bunce JA 《Annals of botany》2002,90(3):399-403
Studies have indicated that the concentration of carbon dioxide [CO2] during the dark period may influence plant dry matter accumulation. It is often suggested that these effects on growth result from effects of [CO2] on rates of respiration, but responses of respiration to [CO2] remain controversial, and connections between changes in respiration rate and altered growth rate have not always been clear. The present experiments tested whether translocation, a major consumer of energy from respiration in exporting leaves, was sensitive to [CO2]. Nineteen-day-old soybean plants grown initially at a constant [CO2] of 350 micromol mol(-1) were exposed to three consecutive nights with a [CO2] of 220-1400 micromol mol(-1), with a daytime [CO2] of 350 micromol mol(-1). Change in dry mass of the individual second, third and fourth trifoliate leaves over the 3-d period was determined, along with rates of respiration and photosynthesis of second leaves, measured by net CO2 exchange. Translocation was determined from mass balance for second leaves. Additional experiments were conducted where the [CO2] around individual leaves was controlled separately from that of the rest of the plant. Results indicated that low [CO2] at night increased both respiration and translocation and elevated [CO2] decreased both processes, to similar relative extents. The effect of [CO2] during the dark on the change in leaf mass over 3 d was largest in second leaves, where the change in mass was about 50% greater at 1400 micromol mol(-1) CO2 than at 220 micromol mol(-1) CO2. The response of translocation to [CO2] was localized in individual leaves. Results indicated that effects of [CO2] on net carbon dioxide exchange rate in the dark either caused or reflected a change in a physiologically important process which is known to depend on energy supplied by respiration. Thus, it is unlikely that the observed effects of [CO2] on respiration were artefacts of the measurement process in this case.  相似文献   

17.
Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP–precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time.  相似文献   

18.
Lewis JD  Wang X  Griffin KL  Tissue DT 《Oecologia》2003,135(2):194-201
Plant population and community dynamics may be altered by increasing atmospheric CO(2) concentrations [[CO(2)]] through intraspecific variation in the responses of vegetative and reproductive growth. Although these responses may be regulated by age at flowering, little is known about the direct effects of age at flowering on growth responses to elevated [CO(2)]. In this study, we examined the interactive effects of elevated [CO(2)] and age at flowering on absolute and relative allocation to vegetative and reproductive growth in the determinate, short-day species Xanthium strumarium L. (common cocklebur). Six cohorts were planted at 5-day intervals in chambers maintained at either 365 or 730 micro mol mol(-1) CO(2), with an 18-h photoperiod and a non-limiting nutrient supply. All plants were simultaneously induced to flower by switching the photoperiod to 12 h for 2 days, then switching back to an 18-h photoperiod for the remainder of the experiment. All plants were harvested 15 days after the onset of flowering. Total plant biomass increased 11-41% with increasing [CO(2)] and 45% from the youngest to the oldest cohort. Vegetative growth responses to elevated [CO(2)] significantly increased with increasing age at flowering, associated with increasing sink relative to source capacity. In contrast, total fruit mass decreased 32% from the youngest to the oldest cohort and was not significantly affected by CO(2) supply. Relative biomass allocation to fruit decreased 47% from the youngest to the oldest cohort, reflecting decreased numbers of fruit, and 6-28% with increasing [CO(2)], reflecting decreased mean mass per mature fruit. Our findings suggest that elevated [CO(2)] may increase vegetative growth in Xanthium without increasing reproductive biomass, and that age at flowering may influence these responses through effects on source:sink balance. Further, changes in the allometric relationship between vegetative and reproductive growth associated with growth in elevated [CO(2)] suggest that long-term population and community-level responses to elevated [CO(2)] may differ substantially from predictions based on vegetative responses.  相似文献   

19.
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号