首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].  相似文献   

2.
Plant responses to elevated CO2 concentrations ([CO2]) may be regulated by both accelerated ontogeny and allocational changes as plants grow. However, isolating ontogeny‐related effects from age‐related effects are difficult because these factors are often confounded. In this study, the roles of age and ontogeny in photosynthetic responses to elevated [CO2] were examined on Xanthium strumarium L. grown at ambient (365 µmol mol?1) and elevated (730 µmol mol?1) [CO2]. To examine age‐related effects, six cohorts were planted at 5‐day intervals. To examine ontogeny‐related effects, all plants were induced to flower at the same time; ontogeny in Xanthium is relatively unaffected by growth in elevated [CO2]. Growth in elevated [CO2] increased net photosynthetic rates by approximately 30% throughout vegetative growth (i.e. active carbohydrate sinks), approximately 10% during flowering (i.e. minimal sink activity), and approximately 20% during fruit production (i.e. active sinks). At the harvest, the ratio of source to sink tissue significantly decreased with increasing plant age and was correlated with leaf soluble sugar concentration. Leaf soluble sugar concentration was negatively correlated with the relative photosynthetic response to elevated [CO2]. These results suggest that age and ontogeny independently affect photosynthetic responses to elevated [CO2] and the effects are mediated by reversible changes in source : sink balance.  相似文献   

3.
植物有性繁殖与资源分配的关系研究对于揭示植物生活史特征及繁育系统进化具有重要意义。新疆郁金香(Tulipa sinkiangensis)是新疆天山北坡荒漠带特有的一种多年生早春短命植物。在自然生境中,该物种仅以有性繁殖产生后代,每株能产生1-8朵花,且不同植株上的花数及果实数以及花序不同位置上的花与果实大小明显不同。本文通过对新疆郁金香有性繁殖与营养生长及植株大小的关系以及花序中不同位置花及果实间的资源分配研究,旨在揭示营养生长、个体大小及开花次序对其繁殖分配的影响。结果表明:在开花和果实成熟阶段,新疆郁金香植株分配给营养器官(鳞茎和地上营养器官)与繁殖器官的资源间均存在极显著的负相关关系(P<0.01),说明其植株的营养生长与生殖生长间存在权衡关系。多花是新疆郁金香的一个稳定性状,其植株上花数目、花生物量、果实生物量和种子数量与植株生物量间均呈极显著的正相关关系(P<0.01),说明新疆郁金香植株的繁殖分配存在大小依赖性。在具2-5朵花的新疆郁金香植株中,花序内各花的生物量、花粉数和胚珠数、结实率、果实生物量、结籽数、结籽率及种子百粒重按其开花顺序依次递减,说明花序内各花和果实的资源分配符合资源竞争假说。植株通过减少晚发育的花或果实获得的资源来保障早发育的花或果实获得较多的资源,从而达到繁殖成功。  相似文献   

4.
Atmospheric CO(2) concentration ([CO(2)]) is rising on a global scale and is known to affect flowering time. Elevated [CO(2)] may be as influential as temperature in determining future changes in plant developmental timing, but little is known about the molecular mechanisms that control altered flowering times at elevated [CO(2)]. Using Arabidopsis thaliana, the expression patterns were compared of floral-initiation genes between a genotype that was selected for high fitness at elevated [CO(2)] and a nonselected control genotype. The selected genotype exhibits pronounced delays in flowering time when grown at elevated [CO(2)], whereas the control genotype is unaffected by elevated [CO(2)]. Thus, this comparison provides an evolutionarily relevant system for gaining insight into the responses of plants to future increases in [CO(2)]. Evidence is provided that elevated [CO(2)] influences the expression of floral-initiation genes. In addition, it is shown that delayed flowering at elevated [CO(2)] is associated with sustained expression of the floral repressor gene, FLOWERING LOCUS C (FLC), in an elevated CO(2)-adapted genotype. Understanding the mechanisms that account for changes in plant developmental timing at elevated [CO(2)] is critical for predicting the responses of plants to a high-CO(2) world of the near future.  相似文献   

5.
We studied the effects on the phenology, growth and reproduction of 19 Mediterranean species, of elevating the atmospheric CO2 concentration ([CO2]) to twice-ambient. Intact monoliths were taken from an old-field and put, during a six month growing season, into growth chambers in which external climatic conditions were mimicked and [CO2] was regulated. Fruit set time was significantly changed in six species under elevated [CO2] and leaf and branch senescence accelerated in most species. Grasses had fewer leaves and legumes were more branched at peak production under elevated [CO2] than under ambient. Plant seed number was not significantly changed under elevated [CO2], whereas the reproductive effort of grasses was significantly depressed. Reproductive and vegetative characteristics showed related responses to [CO2], as species with enhanced biomass had a hastened fruit set time, a higher number of fruits per plant and a higher reproductive biomass under elevated [CO2] than under ambient conditions, while species with depressed biomass had a delayed fruit set time, a lower number of fruits per plant and a lower reproductive biomass. Our results also show a high interspecific variability in [CO2] response, but some trends emerged at the family level: the production of vegetative and reproductive modules were depressed in grasses and slightly stimulated in legumes.  相似文献   

6.
Flowering time and elevated atmospheric CO2   总被引:1,自引:1,他引:0  
Flowering is a critical milestone in the life cycle of plants, and changes in the timing of flowering may alter processes at the species, community and ecosystem levels. Therefore understanding flowering-time responses to global change drivers, such as elevated atmospheric carbon dioxide concentrations, [CO(2)], is necessary to predict the impacts of global change on natural and agricultural ecosystems. Here we summarize the results of 60 studies reporting flowering-time responses (defined as the time to first visible flower) of both crop and wild species at elevated [CO(2)]. These studies suggest that elevated [CO(2)] will influence flowering time in the future. In addition, interactions between elevated [CO(2)] and other global change factors may further complicate our ability to predict changes in flowering time. One approach to overcoming this problem is to elucidate the primary mechanisms that control flowering-time responses to elevated [CO(2)]. Unfortunately, the mechanisms controlling these responses are not known. However, past work has indicated that carbon metabolism exerts partial control on flowering time, and therefore may be involved in elevated [CO(2)]-induced changes in flowering time. This review also indicates the need for more studies addressing the effects of global change drivers on developmental processes in plants.  相似文献   

7.
Graft transmission of a floral stimulant derived from CONSTANS   总被引:16,自引:0,他引:16       下载免费PDF全文
Ayre BG  Turgeon R 《Plant physiology》2004,135(4):2271-2278
Photoperiod in plants is perceived by leaves and in many species influences the transition to reproductive growth through long-distance signaling. CONSTANS (CO) is implicated as a mediator between photoperiod perception and the transition to flowering in Arabidopsis. To test the role of CO in long-distance signaling, CO was expressed from a promoter specific to the companion cells of the smallest veins of mature leaves. This expression in tissues at the inception of the phloem translocation stream was sufficient to accelerate flowering at the apical meristem under noninductive (short-day) conditions. Grafts that conjoined the vegetative stems of plants with different flower-timing phenotypes demonstrated that minor-vein expression of CO is able to substitute for photoperiod in generating a mobile flowering signal. Our results suggest that a CO-derived signal(s), or possibly CO itself, fits the definition of the hypothetical flowering stimulant, florigen.  相似文献   

8.
Y. Shitaka  T. Hirose 《Oecologia》1993,95(3):334-339
The effect of different dates of germination on the timing of flowering and the final reproductive yield was examined in a short-day annual plant Xanthium canadense (cocklebur). Delays in germination of 30 and 60 days deferred flower initiation by 2 and 9 days, respectively. Although plants that germinated later were smaller because of the shorter growing period, the reproductive yields did not show as much reduction as the vegetative biomass. The reproductive effort (RE, defined as the ratio of final reproductive yield to the vegetative biomass at the end of the growing season) increased 1.5 and 2.5 times with delays in germination of 30 and 60 days, respectively. A simple model of plant growth was used to analyse the factors involved in the control of RE, which depends only on the dry mass productivity and its partitioning in the reproductive phase, and is independent of the productivity and partitioning in the vegetative phase. Since relative allocation of dry mass to the reproductive part in the reproductive phase was similar for plants with different germination dates, the different REs could be ascribed mainly to differences in productivity of the vegetative parts in the reproductive period. The dependence of RE on plant size is discussed.  相似文献   

9.
Females of woody dioecious species usually devote more resources to reproduction than males. This may lead to a decrease in female survival and growth. The costs of reproduction, however, can be lightened through a number of mechanisms, as for example avoiding the temporal coincidence of reproduction and vegetative growth. The aim of this study was to evaluate whether males and females of P. lentiscus differ in the timing of their vegetative growth, and to assess whether the sequencing of vegetative growth and reproduction reduces reproductive costs. We monitored phenology in males and females. We also compared male and female allocation of nutrients and biomass in the branch, and the developmental stability of the growing shoots. We did this both prior to and at the end of the fruiting period. Males and females showed similar vegetative and flowering phenologies. Males invested more biomass in flowering, but the sexes showed equal vegetative biomass and nutrient content prior to the fruiting period. In female branches, no trade-off was found between fruit load and current-year vegetative growth. In P. lentiscus, avoiding the overlap of flowering, vegetative growth and fruiting probably contributes to reduce the immediate costs of reproductive efforts, both in males and females.  相似文献   

10.
Stimulation of vegetative growth by an elevated CO2 concentration does not always lead to an increase in reproductive yield. This is because reproductive yield is determined by the fraction of biomass allocated to the reproductive part as well as biomass production. We grew Xanthium canadense at low N (LN) and high N levels (HN) under an ambient (360 mol mol-1) and elevated (700 mol mol-1) CO2 concentration ([CO2]) in open-top chambers. Reproductive yield was analysed as the product of: (1) the duration of the reproductive period, (2) the rate of dry mass acquisition in the reproductive period, and (3) the fraction of acquired biomass allocated to the reproductive part. Elevated [CO2] increased the total amount of biomass that was allocated to reproductive structures, but this increase was caused by increased capsule mass without a significant increase in seed production. The increase in total reproductive mass was due mainly to an increase in the rate of dry mass acquisition in the reproductive period with a delay in leaf senescence. This positive effect was partly offset by a reduction in biomass allocation to the reproductive part at elevated [CO2] and HN. The duration of the reproductive period was not affected by elevated [CO2] but increased by HN. Seed production was strongly constrained by the availability of N for seed growth. The seed [N] was very high in X. canadense and did not decrease significantly at elevated [CO2]. HN increased seed [N] without a significant increase in seed biomass production. Limited seed growth caused a reduction in biomass allocation to the reproductive part even though dry mass production was increased due to increased [CO2] and N availability.  相似文献   

11.
植物由营养生长向生殖生长转变过程中光周期调控起着重要的作用。CONSTANS (CO) 是光周期途径中的特有基因,为探讨高羊茅FaCONSTANS (FaCO) 基因响应日照长短从而启动植物开花的机理,利用实时荧光定量qRT-PCR技术分析在长日照、短日照、持续光照、持续黑暗条件下FaCO基因的表达水平。构建过表达载体p1300-FaCO,利用农杆菌介导法遗传转化拟南芥,构建沉默载体p1300-FaCO-RNAi遗传转化高羊茅。结果表明,FaCO基因的表达受光周期调控,与生物钟控制的昼夜节律相关。在长日照条件下FaCO基因促进拟南芥开花,且恢复拟南芥突变体开花表型。RNAi沉默FaCO基因的高羊茅转基因植株晚花或者一直处于营养生长阶段。本研究初步探究高羊茅FaCO基因对开花过程的调控,这将有助于更进一步了解该基因的生物学功能。  相似文献   

12.
Soybean development is controlled by environmental factors, primarily photoperiod and temperature. To date, photoperiod effects on flowering have been well studied but the performances and mechanism of postflowering photoperiod responses have not been fully understood, especially for the photoperiod effects on vegetative growth after flowering. In the present study, the responses of vegetative growth and reproductive development in soybean to different postflowering photoperiod regimes were investigated in four separate experiments. Three varieties of different maturity groups (MG) including the early (Dongnong 36, MG 000), medium (Dandou 5, MG IV), and late (Zigongdongdou, MG IX) were exposed to two photoperiods, short (10, 12 h) and long (15, 16 or 18 h). The results showed that postflowering photoperiod not only regulated reproductive development but also affected vegetative growth. Even when flowers and pods were removed, short-day (SD) treatment promoted leaf senescence. The onset of leaf senescence among varieties tested appeared to be dependent on photoperiod sensitivity. Leaf senescence of the late-maturing variety of Zigongdongdou (sensitive to photoperiod) was delayed more significantly than that of the medium and early-maturing varieties (less sensitive to photoperiod). Long-day (LD) treatments delayed leaf senescence and seed maturation in the late-maturing variety of Zigongdongdou plants with only the SD-induced leaves produced before flowering. LD treatments imposed from the beginning bloom, beginning pod setting or beginning seed filling delayed leaf senescence and seed maturation of late-maturing soybean variety (Zigongdongdou). Results of night-break with red (R) and far-red (FR) light demonstrated that postflowering photoperiod responses of soybean were R/FR reversible reactions and the phytochromes seemed to be functional as receptors of photoperiod signals even after flowering. It was proposed that the regulation of photoperiod on development of soybean was effective from emergence through maturation, and the postflowering photoperiod signals were also mediated by phytochromes similar to those before flowering. The flowering reversion in late-MG soybean varieties under LD was a direct result of LD and was not due to secondary effect of abscission of pods and flowers. Soybean leaves not only received SD signals but also LD signals; furthermore, the LD effects reversed the SD effects and vice versa.  相似文献   

13.
刘永平  杨静  杨明峰 《生物工程学报》2015,31(11):1553-1566
开花是植物从营养生长转换为生殖生长的生理发育过程,受光周期、温度、激素、年龄等多个因素诱导,在植物生长和物种进化中处于核心地位。综合不断更新的开花分子遗传结果,将植物响应各种内源和外源信号启动开花的途径归纳为:经典的光周期途径、春化途径、自主途径、赤霉素途径和较新的年龄途径共5条。旨在描绘出这些不同途径间既独立又相互影响的复杂网络关系,为进一步探索和阐述更多植物的开花分子机理提供借鉴与参考。  相似文献   

14.
15.
We investigated the relationship between flowering time and sexual allocation in wild-type Arabidopsis thaliana and in genetically similar lineages with single-locus mutations of floral induction genes. We examined whether the mechanisms of growth and development that govern resource investment would permit the independent evolution of reproductive phenology and sexual allocation, or whether constraints, manifested as pleiotropic effects of the single mutations, would link these two life-history traits. Flowering times differed significantly among genotypes, and, as expected, later flowering times were associated with larger vegetative size. Later flowering genotypes produced heavier floral parts (larger petals, in particular), and allocated a significantly lower proportion of biomass to androecia, especially in final allocations that included fruit biomass. At least part of this pleiotropic covariation of flowering time and sexual allocation is likely to be mediated by vegetative size and the rate of resource supply to growing reproductive tissues, because the larger fruits of late-flowering genotypes required the same time, or proportionately less time than the difference in biomass, to mature. Because fruit mass is considered an investment in female function, sexual allocation measured at the end of a growing season tends to be highly female biased in angiosperms. We consider the implications of the pleiotropic association of flowering time, vegetative size, and sexual investment for the theory of sex allocation, and suggest that the idiosyncratic phenology of sexual investment in flowering plants creates a departure from a central assumption of Fisher's seminal sex allocation argument.  相似文献   

16.
In dioecious species, females typically allocate more resources to reproduction and incur greater costs of reproduction than males. In gynodioecious species, sex-based differences in reproductive allocation (RA) and costs have been less studied. Such knowledge, however, is relevant to address how females establish and increase in frequency in populations. We examine RA and reproductive costs by comparing fruit set, the proportion of biomass allocated to reproduction, and the responses of fruit set and vegetative growth to shoot defoliation in females and hermaphrodites in gynodioecious Leucopogon melaleucoides. Relative to hermaphrodites, females exhibited a two-fold fruit set advantage. Female fruit set increased proportionately with flower number, but hermaphrodite fruit set was reduced on plants with more flowers. Sex-based differences in allocation to other traits were small. Thus, female RA at flowering was similar to hermaphrodite RA, but was 1.4-fold greater at fruiting. Relative to controls, defoliation reduced fruit set and the percentage of shoots that produced new vegetative growth similarly in both sexes. However, females had a lower proportion of shoots with new growth overall. Further, defoliation on females reduced the dry mass of new growth by 44% compared with controls, whereas hermaphrodites were not affected. These results indicate a trade-off between reproduction and vegetative growth, and greater female costs of reproduction, particularly under resource-limiting conditions. In the absence of compensatory traits to offset higher female reproductive costs, such trade-offs have the potential to retard the spread of females in gynodioecious populations.  相似文献   

17.
Heading time in bread wheat ( Triticum aestivum L.) is determined by three characters – vernalization requirement, photoperiodic sensitivity and narrow-sense earliness (earliness per se) – which are involved in the phase transition from vegetative to reproductive growth. The wheat APETALA1 ( AP1 )-like MADS-box gene, wheat AP1 ( WAP1 , identical with VRN1 ), has been identified as an integrator of vernalization and photoperiod flowering promotion pathways. A MADS-box gene, SUPPRESSOR OF OVEREXPRESSION OF CO 1 ( SOC1 ) is an integrator of flowering pathways in Arabidopsis . In this study, we isolated a wheat ortholog of SOC1 , wheat SOC1 ( WSOC1 ), and investigated its relationship to WAP1 in the flowering pathway. WSOC1 is expressed in young spikes but preferentially expressed in leaves. Expression starts before the phase transition and is maintained during the reproductive growth phase. Overexpression of WSOC1 in transgenic Arabidopsis plants caused early flowering under short-day conditions, suggesting that WSOC1 functions as a flowering activator in Arabidopsis . WSOC1 expression is affected neither by vernalization nor photoperiod, whereas it is induced by gibberellin at the seedling stage. Furthermore, WSOC1 is expressed in transgenic wheat plants in which WAP1 expression is cosuppressed. These findings indicate that WSOC1 acts in a pathway different from the WAP1 -related vernalization and photoperiod pathways.  相似文献   

18.
以玉米光敏感自交系CML288和不敏感自交系黄早4为实验材料,采用长日照15 h、短日照9 h的不同光周期处理,利用激光扫描共聚焦显微镜(laser scanning confocal microscope, LCSM)观察了不同叶龄期玉米茎尖分生组织的形态学变化.结果表明,短日照能促进玉米开花,促进茎端分生组织向生殖生长转化,黄早4和CML288分别在6叶期和7叶期完成茎尖分生组织的生殖转化;而长日照则明显延迟开花,延迟茎尖分生组织向生殖生长转化,黄早4和CML288分别在8叶期和11叶期完成茎尖分生组织的生殖转化;因此光周期诱导玉米开花因光照条件和品种有一定差异,短日照条件下,光敏感和不敏感的玉米自交系开花提前,花期更接近,而长日照条件下光敏感玉米自交系开花延迟要比不敏感自交系明显得多.  相似文献   

19.
Ewert F 《Annals of botany》2004,93(6):619-627
BACKGROUND AND AIMS: The problem of increasing CO(2) concentration [CO(2)] and associated climate change has generated much interest in modelling effects of [CO(2)] on plants. While variation in growth and productivity is closely related to the amount of intercepted radiation, largely determined by leaf area index (LAI), effects of elevated [CO(2)] on growth are primarily via stimulation of leaf photosynthesis. Variability in LAI depends on climatic and growing conditions including [CO(2)] concentration and can be high, as is known for agricultural crops which are specifically emphasized in this report. However, modelling photosynthesis has received much attention and photosynthesis is often represented inadequately detailed in plant productivity models. Less emphasis has been placed on the modelling of leaf area dynamics, and relationships between plant growth, elevated [CO(2)] and LAI are not well understood. This Botanical Briefing aims at clarifying the relative importance of LAI for canopy assimilation and growth in biomass under conditions of rising [CO(2)] and discusses related implications for process-based modelling. MODEL: A simulation exercise performed for a wheat crop demonstrates recent experimental findings about canopy assimilation as affected by LAI and elevation of [CO(2)]. While canopy assimilation largely increases with LAI below canopy light saturation, effects on canopy assimilation of [CO(2)] elevation are less pronounced and tend to decline as LAI increases. Results from selected model-testing studies indicate that simulation of LAI is often critical and forms an important source of uncertainty in plant productivity models, particularly under conditions of limited resource supply. CONCLUSIONS: Progress in estimating plant growth and productivity under rising [CO(2)] is unlikely to be achieved without improving the modelling of LAI. This will depend on better understanding of the processes of substrate allocation, leaf area development and senescence, and the role of LAI in controlling plant adaptation to environmental changes.  相似文献   

20.
植物的资源分配模式反映了对环境的生态适应对策。2007年整个生长季, 采用生物量法对腾格里沙漠东南缘固沙植被区半灌木油蒿(Artemisia ordosica)地上部分各器官的生长及资源分配格局动态进行了研究。结果表明: 不同时期各器官的生长速率不同, 光合产物在各器官中的分配也不是等量的, 而是按一定的顺序在不同时期有不同的分配中心; 2007年油蒿的营养生长、繁殖输出、生殖枝大小都显著大于年降水量不足其一半的年份, 而繁殖分配和头状花序大小没有差异; 营养器官生物量大的油蒿总的繁殖输出也大, 但生殖期内营养生长和生殖生长既不同时也不等速, 表明资源分配的权衡(Trade-off)是存在的; 固沙植被建立以后, 随着时间延长, 油蒿的当年总生物量、繁殖输出、繁殖器官生物量分配有减小的趋势, 但不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号