首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Identifying the thresholds for the positive responses of total net primary productivity (NPP) to nitrogen (N) enrichment is an essential prerequisite for predicting the benefits of N deposition on ecosystem carbon sequestration. However, the responses of below-ground NPP (BNPP) to N enrichment are unknown in many ecosystems, which limits our ability to understand the carbon cycling under the scenario of increasing N availability. We examined the changes in above-ground NPP (ANPP), BNPP, and NPP of a temperate meadow steppe across a wide-ranging N addition gradient (0, 2, 5, 10, 20, and 50 g N m−2 year−1) during 5 years. Both ANPP and NPP increased nonlinearly with N addition rates. The N saturation threshold for ANPP (TA) and NPP (TN) was at the rate of 13.11 and 6.70 g N m−2 year−1, respectively. BNPP decreased with increasing N addition when N addition rates ˃5 g N m−2 year−1, resulting in much lower TN than TA. Soil N enrichment played a key role in driving the negative impacts of high N addition rates on BNPP, and consequently on the earlier occurrence of N saturation threshold for NPP. Our results highlight the negative effects of soil N enrichment on NPP in natural grasslands super-saturated with N. Furthermore, by considering ANPP and BNPP simultaneously, our results indicate that previous findings from above-ground might have over-estimated the positive effects of N deposition on primary productivity.  相似文献   

2.
A mixture of ryegrass (Lolium italicum A. Braun) and clover (Trifolium alexandrinum L.) was sown in Eboli (Salerno, Southern Italy) in September 2007. Crop growth, leaf and canopy gas exchange and ecophysiological traits were monitored throughout the growth cycle. The gross primary production (GPP) was not affected by air temperature (T air); on the contrary the ecosystem respiration (R eco) decreased as T air decreased while net ecosystem CO2 exchange (NEE) increased. When was normalized with leaf area index (LAI), GPP decreased with T air, a likely response to cold that down-regulated canopy photosynthesis in order to optimize the light use at low winter temperatures. Net photosynthetic rates (P N), the effective quantum yield of PSII (ΦPSII) and photosynthetic pigment content were higher in clover than ryegrass, in relation to the higher leaf N content. The lower ΦPSII in ryegrass was linked to lower photochemical quenching coefficient (qP) values, due to a reduced number of reaction centres, in agreement with the lowest Chl a content. This behaviour can be considered as an adaptive strategy to cold to avoid photooxidative damage at low temperature rather than an impairment of PSII complexes.  相似文献   

3.
We present a global assessment of the relationships between the short‐wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle‐leaf forests (ENF); evergreen broad‐leaf forests (EBF); deciduous needle‐leaf forests (DNF); deciduous broad‐leaf forests (DBF); and mixed‐forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short‐wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad‐leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select ‘pure’ pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.  相似文献   

4.
5.
Asian terrestrial ecosystems cover an extensive area characterized by a large variety in climates and ecosystem properties. The observations of ecosystem CO2 flux in this area are increasing both in duration and spatial density, but no synthesis has yet been conducted. We surveyed CO2 flux observation data obtained by eddy covariance methods at 49 sites in terrestrial Asia. The measurements at most sites (44 of 49) began after 2000. The net ecosystem uptake of CO2 (NEE) varied greatly among sites and years and averaged −132.6±73.7, −250.1±206.1, and −180.1±361.7 g C m−2 yr−1, in boreal, temperate, and tropical Asia, respectively, and the coefficient of variation among sites increased from boreal to tropical Asia. The site-averaged annual NEE was correlated linearly with the mean annual temperature (Tair) and also correlated logarithmically with the precipitation. Multiple regression analysis and stepwise analysis indicated that photosynthetic active radiation (PAR) and Tair were the most significant predictors of the annual NEE. The study results suggest that Asian terrestrial ecosystems are currently significant net CO2 sinks and that the sink strength is largely controlled by temperature, moisture, and light conditions.  相似文献   

6.
王晓濛  侯继华  何念鹏 《生态学报》2023,43(6):2488-2500
植物群落生产力是表征植物群落光合生产能力的重要参数,是维护生态系统稳定性与可持续发展的基础。研究沿中国东西样带(WETC)的水热梯度对植物群落展开野外调查,并基于调查数据计算植物群落地上生物量(AGB)及地上净初级生产力(ANPP),结合环境因子对我国植物群落生产力的东西分布格局及其驱动因素进行了探讨。中国东西样带(WETC)沿30°N设置,水热梯度明显,具有良好的植被、气候等环境因素的过渡特征。在该样带上,ANPP和AGB均具有明显的经度地带性和垂直地带性分布特征,并且其空间分布特征能够较好地被环境因子所解释;具体关系为:ANPP、AGB和年降水(MAP)、生长季温度(Tgs)、CO2分压(Pco2)呈显著正相关关系,与太阳辐射(SRAD)、风速(WS)、pH为显著负相关关系。由于青藏高原特殊环境的影响,在该样带上除了MAP和Tgs外,Pco2也成为影响ANPP和AGB空间分布格局的重要因子,该结论为未来研究高海拔地区群落生产力的响应机制提供了新的启示。综上所述,中国东西样带...  相似文献   

7.
周正虎  王传宽 《生态学报》2017,37(7):2428-2436
土地利用方式的变化导致土壤碳氮含量及其化学计量关系的变化,然而土壤微生物化学计量及其驱动的碳氮矿化过程如何响应这种变化仍不明确。以帽儿山地区天然落叶阔叶林、人工红松林、草地和农田4种不同土地利用类型为对象,测定其土壤有机碳(C_(soil))、全氮(N_(soil))、微生物生物量碳和氮(C_(mic)和N_(mic))、土壤碳和氮矿化速率(C_(min)和N_(min)),旨在比较不同土地利用方式对土壤、微生物碳氮化学计量特征及矿化速率的影响,探索土壤-微生物-矿化之间碳氮化学计量特征的相关性,揭示微生物对土壤碳氮化学计量变化的响应和调控机制。结果显示:C_(soil)、N_(soil)、C_(mic)、N_(mic)和C_(min)均呈现天然落叶阔叶林人工红松林草地农田,而天然落叶阔叶林和草地的N_(min)显著高于人工红松林和农田。土地利用方式显著影响土壤和微生物碳氮比(C∶N_(soil)和C∶N_(mic)),均呈现农田最高。不同土地利用方式的数据综合分析发现:碳氮矿化速率比与C∶N_(mic)呈负相关,而和微生物与土壤碳氮化学计量不平衡性(C∶N_(imb))显著正相关。单位微生物生物量的碳矿化速率(qCO_2)随着C∶N_(mic)的增加而降低,而单位微生物生物量的氮矿化速率(qAN)随着C∶N_(mic)的增加而增加。C∶N_(imb)与qCO_2正相关,与qAN负相关。以上结果表明,微生物会通过改变自身碳氮化学计量、调整碳氮之间相对矿化速率,以适应土地利用变化导致的土壤碳氮及其化学计量的变异性,以满足自身生长和代谢的碳氮需求平衡。  相似文献   

8.
Maximum and minimum soil temperatures affect belowground processes. In the past 50 years in arid regions, measured reductions in the daily temperature range of air (DTRair) most likely generated similar reductions in the unmeasured daily temperature range of soil (DTRsoil). However, the role of DTRsoil in regulating microbial and plant processes has not been well described. We experimentally reduced DTRsoil in the Chihuahuan Desert at Big Bend National Park over 3 years. We used shade cloth that effectively decreased DTRsoil by decreasing daily maximum temperature and increasing nighttime minimum temperature. A reduction in DTRsoil generated on average a twofold increase in soil microbial biomass carbon, a 42% increase in soil CO2 efflux and a 16% reduction in soil NO3?–N availability; soil available NH4+–N was reduced by 18% in the third year only. Reductions in DTRsoil increased soil moisture up to 15% a few days after a substantial rainfall. Increased soil moisture contributed to higher soil CO2 efflux, but not microbial biomass carbon, which was significantly correlated with DTRsoil. Net photosynthetic rates at saturating light (Asat) in Larrea tridentata were not affected by reductions in DTRsoil over the 3 year period. Arid ecosystems may become greater sources of C to the atmosphere with reduced DTRsoil, resulting in a positive feedback to rising global temperatures, if increased C loss is not eventually balanced by increased C uptake. Ultimately, ecosystem models of N and C fluxes will need to account for these temperature‐driven processes.  相似文献   

9.
10.
White birch (Betula papyrifera Marsh.) seedlings were exposed to ambient or doubled ambient carbon dioxide concentration ([CO2]), three soil temperatures (Tsoil) (low, intermediate, high), and three phosphorus (P) regimes (low, medium, high) in environment‐controlled greenhouses. Height (H), root‐collar diameter (RCD), biomass, and leaf phosphorus concentration (leaf P) were determined four months after initiation of treatments. The low Tsoil reduced H, RCD, shoot biomass, root biomass and total seedling biomass whereas the high‐P level and the [CO2] elevation increased all the growth and biomass parameters. Elevated [CO2] significantly reduced leaf P. There were significant two‐factor interactions suggesting that the effect of elevated [CO2] on (1) H, total biomass, biomass of plant components, and leaf P was dependent on Tsoil, (2) total biomass was contingent on P regime. For instance, the positive response of H and total biomass to elevated [CO2] was limited to seedlings raised under the intermediate and high Tsoil, respectively. In addition, [CO2] elevation increased total biomass only at the high‐P regime but not at the low‐ or medium‐P level where the effect of [CO2] was statistically insignificant. No significant main effect of treatment or interaction was observed for root to shoot biomass ratio.  相似文献   

11.
Dynamic global vegetation models simulate feedbacks of vegetation change on ecosystem processes, but direct, experimental evidence for feedbacks that result from atmospheric CO2 enrichment is rare. We hypothesized that feedbacks from species change would amplify the initial CO2 stimulation of aboveground net primary productivity (ANPP) of tallgrass prairie communities. Communities of perennial forb and C4 grass species were grown for 5 years along a field CO2 gradient (250–500 μL L?1) in central Texas USA on each of three soil types, including upland and lowland clay soils and a sandy soil. CO2 enrichment increased community ANPP by 0–117% among years and soils and increased the contribution of the tallgrass species Sorghastrum nutans (Indian grass) to community ANPP on each of the three soil types. CO2‐induced changes in ANPP and Sorghastrum abundance were linked. The slope of ANPP‐CO2 regressions increased between initial and final years on the two clay soils because of a positive feedback from the increase in Sorghastrum fraction. This feedback accounted for 30–60% of the CO2‐mediated increase in ANPP on the upland and lowland clay soils during the final 3 years and 1 year of the experiment, respectively. By contrast, species change had little influence on the ANPP‐CO2 response on the sandy soil, possibly because Sorghastrum increased largely at the expense of a functionally similar C4 grass species. By favoring a mesic C4 tall grass, CO2 enrichment approximately doubled the initial enhancement of community ANPP on two clay soils. The CO2‐stimulation of grassland productivity may be significantly underestimated if feedbacks from plant community change are not considered.  相似文献   

12.
Effects of elevated CO2 concentration ([CO2]) and air temperature (Tair) on accumulation and intra-plant partitioning of dry matter (DM) and nitrogen in paddy rice were investigated by performing a pot experiment in six natural sunlit temperature gradient chambers (TGCs) with or without CO2 fumigation. Rice (Oryza sativa L.) plants were grown in TGCs for a whole season under two levels of [CO2] (ambient, 380 ppm; elevated, 622 ppm) and two daily Tair regimes (ambient, 25.2°C; elevated, 27.3°C) in split-plot design with triplication. The effects of elevated [CO2] and Tair on DM were most dramatic for grain and shoot with a significant (P?<?0.05) interaction between [CO2] and Tair. Overall, total grain DM increased with elevated [CO2] by 69.6% in ambient Tair but decreased with elevated Tair by 33.8% in ambient [CO2] due to warming-induced floral sterility. Meanwhile, shoot DM significantly increased with elevated Tair by 20.8% in ambient [CO2] and by 46.6% in elevated [CO2]. Although no [CO2]?×?Tair interaction was detected, the greatest total DM was achieved by co-elevation of [CO2] and Tair (by 42.8% relative to the ambient conditions) via enhanced shoot and root DM accumulation, but not grain. This was attributed largely both to increase in tiller number and to accumulation of photosynthate in the shoot and root due to inhibition of photosynthate allocation to grain caused by warming-induced floral sterility. Distribution of N (both soil N and fertilizer 15N) among rice parts in responding to climatic variables entirely followed the pattern of DM. Our findings demonstrate that the projected warming is likely to induce a significant reduction in grain yield of rice by inhibiting DM (i.e., photosynthates) allocation to grain, though this may partially be mitigated by elevated [CO2].  相似文献   

13.
White birch (Betula papyrifera Marsh.) seedlings were grown under two carbon dioxide concentrations ([CO2]) (360 vs 720 μmol mol?1), three soil temperatures (Tsoil) (5, 15, 25°C initially, increased to 7, 17, 27°C, respectively, one month later), and three moisture regimes (low: 30–40%, intermediate: 45–55%, high: 60–70% field water capacity) for four months in environment‐controlled greenhouses. The dry mass of stem, leaves, and roots was measured after 2 and 4 months of treatment. Low Tsoil decreased stem, leaf and total biomass in both measurements, however, the decrease was significantly greater in the elevated than ambient [CO2] after 4 months. Intermediate Tsoil increased root biomass in both measurements. Low moisture reduced stem, leaf, root and total biomass after both 2 and 4 months of treatment. There was a significant Tsoil‐moisture interactive effect on leaf, root, and total biomass after 4 months of treatment, suggesting that the magnitude of biomass enhancement in warmer Tsoil was dependent on the moisture regime. For instance, the increase in total biomass from the low to high Tsoil was 22, 50, and 47% under the low, intermediate and high moisture regimes, respectively. In contrast, the Tsoil×moisture effect on stem biomass was significant after 2 months, but not after 4 months of treatment. High Tsoil increased leaf mass ratio (LMR) after 4 months of treatment, but decreased both root mass ratio (RMR) after both 2 and 4 months, and root:shoot ratio (RSR) after 4 months of treatment. The low moisture regime decreased LMR after 2 and 4 months of treatment, but increased RSR after 4 months of treatment. There were no significant [CO2] effects on biomass allocation or [CO2]×Tsoil×moisture interactions on biomass production/allocation.  相似文献   

14.

Background and aims

Only limited information is available in the research area on the effect of elevated CO2 concentration ([CO2]) and air temperature (Tair) on the fertilizer N uptake by rice. This study was conducted to investigate changes in rice uptake of N derived from fertilizer (NDFF) and soil (NDFS) as well as fertilizer N uptake efficiency (FUE) with elevated [CO2] and Tair in two soils with different fertility.

Methods

Rice (Oryza sativa L.) plants were grown with 15N-urea for two growing seasons (2007 in the less fertile and 2008 in the more fertile soil) in temperature gradient chambers under two (ambient and elevated) levels of [CO2] and Tair regimes. At harvest, dry matter (DM) and N uptake amount of rice compartments (root, shoot, and grain) were determined.

Results

The DM of whole rice increased (P?<?0.01) with co-elevation of [CO2] and Tair in both years (by 28.0 % in 2007 and by 27.4 % in 2008). The DM in 2008 was greater than that in 2007 by 48.1 to 63.1 % probably due to better soil fertility as well as longer sunshine hours (456 h vs. 568 h). Co-elevation of [CO2] and Tair increased total N uptake, NDFF, and NDFS by 19.4 to 29.1 % in general compared to the ambient conditions. The FUE increased with co-elevation of [CO2] and Tair from 46.5 to 59.5 % in 2007 and from 36.7 to 43.8 % in 2008.

Conclusions

The projected global warming with elevated [CO2] is expected to increase FUE via enhanced DM accumulation with less increments in the soils that have higher indigenous soil N availabilities.  相似文献   

15.
In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long‐term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (GV) and height (GH) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site‐specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed‐effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long‐term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO2 effects on GV and GH were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (Ndep) effects were repeatedly observed in GV and GH; the positive effects of Ndep on canopy height growth rates, which tended to level off at Ndep values greater than approximately 1.0 g m?2 y?1, were interpreted as positive impacts on forest stand above‐ground net productivity at the selected study sites.  相似文献   

16.
Niu  S.L.  Jiang  G.M.  Li  Y.G.  Gao  L.M.  Liu  M.Z. 《Photosynthetica》2003,41(2):221-226
Net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), leaf water potential (ψleaf), leaf nitrogen content, and photosynthetic nitrogen use efficiency (PNUE) were compared between a typical C4 plant, Agriophyllum squarrosum and a C3 plant, Leymus chinensis, in Hunshandak Sandland, China. The plant species showed different diurnal gas exchange patterns on June 12–14 when photosynthetic photon flux density (PPFD), air temperature (T air), and water potential were moderate. P N, E, and g s of A. squarrosum showed distinct single peak while those of L. chinensis were depressed at noon and had two peaks in their diurnal courses. Gas exchange traits of both species showed midday depression under higher photosynthetic photon flux density (PPFD) and T air when Ψleaf was significantly low down on August 6–8. However, those of A. squarrosum were depressed less seriously. Moreover, A. squarrosum had higher P N, Ψleaf, water use efficiency (WUE), and PNUE than L. chinensis. Thus A. squarrosum was much more tolerant to heat and high irradiance and could utilise the resources on sand area more efficiently than L. chinensis. Hence species like A. squarrosum may be introduced and protected to reconstruct the degraded sand dunes because of their higher tolerance to stress and higher resource use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
从2013年12月至2014年11月,通过野外原位试验,对华西雨屏区常绿阔叶林进行了模拟氮沉降和降雨试验,采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定了对照(CK)、氮沉降(N)、减雨(R)、增雨(W)、氮沉降+减雨(NR)、氮沉降+增雨(NW)6个处理水平的土壤呼吸速率,并通过回归方程分析了温度和湿度与土壤呼吸速率间的关系。结果表明:(1)氮沉降和增雨抑制了常绿阔叶林土壤呼吸速率,减雨促进了常绿阔叶林土壤呼吸速率。(2)减雨使华西雨屏区常绿阔叶林土壤呼吸年通量增加了258 g/m~2,而模拟氮沉降和增雨使华西雨屏区常绿阔叶林土壤呼吸年通量分别减少了321g/m~2和406g/m~2。(3)减雨增加了土壤呼吸的温度敏感性,模拟氮沉降和增雨降低了土壤呼吸的温度敏感性。(4)模拟温度和湿度与土壤呼吸速率间回归方程分析表明,土壤水分对土壤呼吸速率的影响较小。(5)模拟氮沉降和增雨处理减少土壤微生物生物量碳、氮的含量,减雨处理增加了土壤微生物生物量碳、氮的含量。(6)模拟氮沉降和降雨对华西雨屏区土壤CO_2释放的影响未表现出明显的交互作用。  相似文献   

18.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

19.
Atmospheric nitrogen (N) deposition (Ndep), an important component of the global N cycle, has increased sharply in recent decades in China. Although there were already some studies on Ndep on a national scale, there were some gaps on the magnitude and the spatial patterns of Ndep. In this study, a national-scale Ndep pattern was constructed based on 139 published papers from 2003 to 2014 and the effects of precipitation (P), energy consumption (E) and N fertilizer use (FN) on spatial patterns of Ndep were analyzed. The wet deposition flux of NH4+-N, NO3--N and total Ndep was 6.83, 5.35 and 12.18 kg ha-1 a-1, respectively. Ndep exhibited a decreasing gradient from southeast to northwest of China. Through accuracy assessment of the spatial Ndep distribution and comparisons with other studies, the spatial Ndep distribution by Lu and Tian and this study both gained high accuracy. A strong exponential function was found between P and Ndep, FN and Ndep and E and Ndep, and P and FN had higher contribution than E on the spatial variation of Ndep. Fossil fuel combustion was the main contributor for NO3--N (86.0%) and biomass burning contributed 5.4% on the deposition of NO3--N. The ion of NH4+ was mainly from agricultural activities (85.9%) and fossil fuel combustion (6.0%). Overall, Ndep in China might be considerably affected by the high emissions of NOx and NH3 from fossil fuel combustion and agricultural activities.  相似文献   

20.
Wood structure might be altered through the physiological responses to atmospheric carbon dioxide concentration ([CO2]) and nitrogen (N) deposition. We investigated growth, water relations and wood structure of 1-year-old seedlings of two deciduous broad-leaved tree species, Quercus mongolica (oak, a ring-porous species) and Alnus hirsuta (alder, a diffuse-porous species and N2–fixer), grown under a factorial combination of two levels of [CO2] (36 and 72 Pa) and nitrogen supply (N; low and high) for 141 days in phytotron chambers. In oak, there was no significant effect of [CO2] on wood structure, although elevated [CO2] tended to decrease stomatal conductance (g s) and increased water use efficiency regardless of the N treatment. However, high N supply increased root biomass and induced wider earlywood and larger vessels in the secondary xylem in stems, leading to increased hydraulic conductance. In alder, there was significant interactive effect of [CO2] and N on vessel density, and high N supply increased the mean vessel area. Our results suggest that wood structures related to water transport were not markedly altered, although elevated [CO2] induced changes in physiological parameters such as g s and biomass allocation, and that N fertilization had more pronounced effects on non-N2-fixing oak than on N2-fixing alder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号