首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The translocation of manganese (Mn), nickel (Ni), cobalt (Co), zinc (Zn) and cadmium (Cd) in white lupin (Lupinus albus cv. Amiga) was compared considering root-to-shoot transport, and redistribution in the root system and in the shoot, as well as the content at different stages of cluster roots and in other roots. To investigate the redistribution of these heavy metals, lupin plants were labelled via the root for 24 h with radionuclides and subsequently grown hydroponically for several weeks. 54Mn, 63Ni and 65Zn were transported via the xylem to the shoot. 63Ni and 65Zn were redistributed afterwards via the phloem from older to younger leaves, while 54Mn remained in the oldest leaves. A strong retention in the root was observed for 57Co and 109Cd. Cluster roots contained higher concentrations of all heavy metals than noncluster roots. Concentrations were generally higher at the beginning of cluster root development (juvenile and immature stages). Mature cluster roots also contained high levels of 54Mn and 57Co, but only reduced concentrations of 63Ni, 65Zn and 109Cd.  相似文献   

2.
Two Zn-finger proteins, TFIIIA (a constituent of 7S RNP particles) and p43 (a constituent of 42S RNP particles), were detected in ovary extracts of juvenile Xenopus laevis females by in vitro binding of radiolabeled divalent metals. Proteins fractionated by SDS-PAGE (sodium dodecylsulfate-polyacrylamide gel electrophoresis) were transferred by Western blotting onto nitrocellulose membranes, probed with 65Zn2+, 63Ni2+, or 109Cd2+, and visualized by autoradiography. Detection limits for TFIIIA were approx 0.07 micrograms/well by 109Cd(2+)-probing, 0.13 micrograms/well by 65Zn(2+)-probing, and 0.26 mu/well by 63Ni(2+)-probing. Protein p43 was more clearly visualized by probing with 63Ni2+ than with 65Zn2+ or 109Cd2+. After purified TFIIIA was cleaved with cyanogen bromide, 65Zn2+, 109Cd2+, and 63Ni2+ distinctly labeled the 22 kDa middle fragment; 65Zn2+ and 109Cd2+ also labeled the 11 kDa N-terminal fragment, but did not label the 13 kDa C-terminal fragment. These results are consistent with the notion that the radioligands were bound to finger-loop domains of TFIIIA, which occur in the middle and N-terminal fragments. Based on the abilities of nonradioactive metal ions to compete with 65Zn2+ for binding to TFIIIA on Western blots, the relative affinities of the metals for TFIIIA were ranked as follows: Zn2+ = Cu2+ greater than or equal to Hg2+ greater than Cd2+ greater than Co2+ greater than or equal to Ni2+. Even at a 1000-fold molar excess, Mn2+ did not compete with 65Zn2+ for binding to TFIIIA. Probing Western blots with the radiolabeled metal ions greatly facilitates the detection, isolation, and quantitation of TFIIIA and p43.  相似文献   

3.
Metal Complexation in Xylem Fluid : III. ELECTROPHORETIC EVIDENCE   总被引:4,自引:2,他引:2       下载免费PDF全文
White MC 《Plant physiology》1981,67(2):311-315
The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in normal and Zn-phytotoxic nutrient solutions. Metal complexation was assayed by anodic or reduced cathodic movement of radionuclides (63Ni, 65Zn, 109Cd, 54Mn) that were presumed to have formed negatively charged complexes.  相似文献   

4.
Cadmium uptake in Escherichia coli K-12.   总被引:5,自引:3,他引:2       下载免费PDF全文
109Cd2+ uptake by Escherichia coli occurred by means of an active transport system which has a Km of 2.1 microM Cd2+ and a Vmax of 0.83 mumol/min X g (dry weight) in uptake buffer. 109Cd2+ accumulation was both energy dependent and temperature sensitive. The addition of 20 microM Cd2+ or Zn2+ (but not Mn2+) to the cell suspensions preloaded with 109Cd2+ caused the exchange of Cd2+. 109Cd2+ (0.1 microM) uptake by cells was inhibited by the addition of 20 microM Zn2+ but not Mn2+. Zn2+ was a competitive inhibitor of 109Cd2+ uptake with an apparent Ki of 4.6 microM Zn2+. Although Mn2+ did not inhibit 109Cd2+ uptake, the addition of either 20 microM Cd2+ or Zn2+ prevented the uptake of 0.1 microM 54Mn2+, which apparently occurs by a separate transport system. The inhibition of 54Mn2+ accumulation by Cd2+ or Zn2+ did not follow Michaelis-Menten kinetics and had no defined Ki values. Co2+ was a competitive inhibitor of Mn2+ uptake with an apparent Ki of 34 microM Co2+. We were unable to demonstrate an active transport system for 65Zn2+ in E. coli.  相似文献   

5.
The uptake and distribution of 65Zn and 54Mn by wheat (Triticumaestivum cv. Aroona) was investigated. Plantswere grown in achelate-buffered nutrient solution with either sufficient Znand Mn, low Zn or low Mn. A single representative seminal rootfrom 14-d-old and 42-d-old plants was dual-labelled with 65Znand 54Mn. The 14-d-old plants were harvested every 10 min from10–140 min of labelling, whilst the 42-d-old plants wereharvested after 2 h of labelling. At harvest, each plant wasseparated into leaves, main stem, unexposedroots, and tillers.In addition, the crown was separatedfrom the stem in the 14-d-oldplants In the control plants labelled at 14 d, 65Zn was firstdetectedand accumulated in the crown of the roots after 40–60min. Labelled Zn was then detected in the stem, followed bythe leaves. The oldest and youngest leaves received less 65Znthan the second and third oldest leaves. The plants grown underlow Zn conditions accumulated more 65Zn in their older leavesand transferred 63Zn to the unexposed roots. Distribution of54Mn was similar in the controls to that of 65Zn, except theolder leaves received no HMn, At the second harvest, a similardistribution pattern of 65Zn and 54Mn was observed with regardto leaf age. Large amounts of 65Zn and 54Mn were detected withinthe unexposed roots of all treatments. It is suggested thatthe distribution of root-supplied Zn and Mn may be determinedby micronutrient status and its relationship with leaf transpirationrates. Key words: Distribution, manganese, vegetative growth, wheat, zinc  相似文献   

6.
The mobility of Cd in potato plants (Solanum tuberosum) was examined using both short‐term radioisotopic labelling with 109Cd and long‐term growth experiments in soil supplemented with Cd, with an emphasis on the pathways through which Cd is taken up by tubers. Split‐pot experiments showed that tubers and their associated stolons and stolon roots contribute only a minor fraction to the overall Cd absorption by the plant. Most of the Cd was absorbed by the basal roots. 109Cd absorbed from the soil was rapidly exported to other parts of the plant, especially the stem, with significant amounts appearing in the tubers within 30 h. Application of 109Cd to leaves showed that Cd can be rapidly distributed via the phloem to all tissues. The results suggest that unlike Ca, Cd has high mobility in plants in both xylem and phloem, and that stems may have an important role in transfer between these two pathways.  相似文献   

7.
* In this study we address the impact of changes in plant heavy metal, (i.e. zinc (Zn) and cadmium (Cd)) status on metal accumulation in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. * Thlaspi caerulescens plants were grown hydroponically on both high and low Zn and Cd regimes and whole-shoot and -root metal accumulation, and root (109)Cd(2+) influx were determined. * High-Zn-grown (500 microm Zn) plants were found to be more Cd-tolerant than plants grown in standard Zn conditions (1 microm Zn). Furthermore, shoot Cd accumulation was significantly greater in the high-Zn-grown plants. A positive correlation was also found between shoot Zn accumulation and increased plant Cd status. Radiotracer (109)Cd root flux experiments demonstrated that high-Zn-grown plants maintained significantly higher root Cd(2+) influx than plants grown on 1 microm Zn. It was also found that both nickel (Ni) and copper (Cu) shoot accumulation were stimulated by high plant Zn status, while manganese (Mn) accumulation was not affected. * A speculative model is presented to explain these findings, suggesting that xylem loading may be one of the key sites responsible for the hyperaccumulation of Zn and Cd accumulation in Thlaspi caerulescens.  相似文献   

8.
This study focussed on the effect of increasing nitrogen (N) supply on root uptake and root-to-shoot translocation of zinc (Zn) as well as retranslocation of foliar-applied Zn in durum wheat (Triticum durum). Nutrient solution experiments were conducted to examine the root uptake and root-to-shoot translocation of (65) Zn in seedlings precultured with different N supplies. In additional experiments, the effect of varied N nutrition on retranslocation of foliar-applied (65) Zn was tested at both the vegetative and generative stages. When N supply was increased, the (65) Zn uptake by roots was enhanced by up to threefold and the (65) Zn translocation from roots to shoots increased by up to eightfold, while plant growth was affected to a much smaller degree. Retranslocation of (65) Zn from old into young leaves and from flag leaves to grains also showed marked positive responses to increasing N supply. The results demonstrate that the N-nutritional status of wheat affects major steps in the route of Zn from the growth medium to the grain, including its uptake, xylem transport and remobilization via phloem. Thus, N is a critical player in the uptake and accumulation of Zn in plants, which deserves special attention in biofortification of food crops with Zn.  相似文献   

9.
Little is known about transport of Zn from leaves to other plantorgans. The present study tested a range of Zn forms appliedfoliarly for their suitability to provide adequate Zn nutritionto wheat (Triticum aestivum L.). Transport of65Zn applied eitherto leaves or to one side of the root system was also studied.Inorganic (ZnO, ZnSO4) and chelated sources of Zn (ZnEDTA, glycine-chelatedBiomin Zn) applied foliarly provided sufficient Zn for vigorousgrowth. Zinc concentrations in roots and shoots were in thesufficiency range, except in the -Zn control. Foliar treatmentswith ZnSO4and chelated Zn forms resulted in shoot Zn concentrationsin 7-week-old plants being about two-fold greater than thosein plants supplied with Zn in the root environment or via foliarspray of ZnO. Adding surfactant to foliar sprays containingchelated forms of Zn did not cause negative growth effects,but surfactant added to ZnO or ZnSO4foliar sprays decreasedshoot growth. Adding urea to the ZnO foliar spray had no effecton shoot growth. Foliarly-applied65Zn was translocated to leavesabove and below the treated leaf as well as to the root tips.Stem girdling confirmed that65Zn transport toward lower leavesand roots was via the phloem. Split-root experiments showedintensive accumulation of65Zn in the stem and transport to allleaves as well as to the root tips in the non-labelled sideof the root system. Foliar application of Zn in inorganic ororganic form is equally suitable for providing adequate Zn nutritionto wheat. Phloem transport of Zn from leaves to roots was demonstrated.Copyright 2001 Annals of Botany Company Foliar spraying, phloem, surfactant, urea, xylem, wheat, zinc  相似文献   

10.
Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese (Mn), and sulphur (S) around the vascular bundles in node I (the node beneath the panicle) of Oryza sativa 'Koshihikari' were compared 1 week after heading. Elemental maps of Cd, Zn, Mn, and S in the vascular bundles of node I were obtained by synchrotron micro-X-ray fluorescence spectrometry and electron probe microanalysis. In addition, Cd K-edge microfocused X-ray absorption near-edge structure analyses were used to identify the elements co-ordinated with Cd. Both Cd and S were mainly distributed in the xylem of the EVB and in the parenchyma cell bridge (PCB) surrounding the EVB. Zn accumulated in the PCB, and Mn accumulated around the protoxylem of the EVB. Cd was co-ordinated mainly with S in the xylem of the EVB, but with both S and O in the phloem of the EVB and in the PCB. The EVB in the node retarded horizontal transport of Cd toward the DVB. By contrast, Zn was first stored in the PCB and then efficiently transferred toward the DVB. Our results provide evidence that transport of Cd, Zn, and Mn is differentially controlled in rice nodes, where vascular bundles are functionally interconnected.  相似文献   

11.
Differences in the accumulation of seven metallic elements, including micronutrients (Cu, Fe, Mn, Ni and Zn) and non-essential elements (Cd and Pb) among plant organs (leaves, roots and rhizomes) were examined in the seagrass Cymodocea nodosa. Samples were taken from two coastal bays (Catalonia, Western Mediterranean), with a total of nine sampling sites encompassing different levels of metal availability. Metal content was generally higher in uptake organs (leaves and roots) than in rhizomes. However, accumulation in leaves and roots varied between elements. While Cd, Mn and Zn preferentially accumulate in leaves, Fe and Pb accumulate in roots and Cu and Ni in both. There were common spatial (between sites) trends in Cd, Mn, Cu and Zn accumulation in the three organs. However, these spatial trends varied according to the organ considered in the case of Fe, Pb, and Ni. Therefore, assessment of within-plant variability is strongly recommended prior to the use of C. nodosa for biomonitoring purposes, at least for Fe, Pb, and Ni.  相似文献   

12.
Transport of zinc and manganese to developing wheat grains   总被引:11,自引:0,他引:11  
An understanding of the transport pathway used by Zn and Mn to enter developing grains may allow measures to increase the Zn and Mn content of wheat grain grown on Zn/Mn deficient soils. For this reason, transport of Zn and Mn into developing grains of wheat ( Triticum aestivum L. cv. Aroona) was investigated. Detached ears (18–22 days post-anthesis) were cultured for 48 h in a solution containing 185 kBq of 65Zn and 185 kBq of 54Mn. Transport of 65Zn to the grain was unaffected by removal of glumes but was slightly reduced after the lemma was removed. Heat girdling the peduncle slightly reduced the amount of 65Zn transported to the grain, whilst heat girdling the rachilla reduced transport of 65Zn to the grain to a greater degree, suggesting phloem transport to the rachilla. The transport inhibitor CCCP (carbonyl cyanide m -chlorophenyl hydrazone) blocked 65Zn transport to grain but not to lemma and glumes. Removing glumes and lemma and heat girdling the peduncle did not affect transport of 54Mn, but transport was slightly affected by heat girdling the rachilla, indicating xylem transport. CCCP blocked transport of 54Mn into the grain but not to lemma and glumes. It was concluded that xylem-to-phloem transfer of Zn occurs in the rachis and to a lesser extent in peduncle and lemma. The results suggest that the lemma may be an important site for phloem loading when the concentration of Zn within the xylem is high. The data also suggest that Mn was predominantly translocated to the spikelets in the xylem, but that transport to the grain was dependent upon membrane transport before entering the grain. Phloem loading of Mn into the grain vascular system may have occurred at the site of xylem discontinuity in the floral axis.  相似文献   

13.
We analysed the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, fish and plants of the River Hindon, U.P., India, at seven sampling stations, in the year 1982. Considerable variation in concentration between water, sediments, fish and plants were noted. The concentration in the water was in the order Fe > Zn > Cr > Mn > Cu > Pb > Ni > Co > Cd, in the sediments, Fe > Mn > Zn > Ni > Cr > - Co > Cu > Pb > Cd; in a fish (Heteropnuestes fossilis) Fe > Zn > Mn > Pb > Ni > Co > Cu > Cd > Cr, and in a plant (Eicchornia crassipes) Fe > Mn > Zn > Ni > Cu > Cr > Pb > Co > Cd.  相似文献   

14.
Cadmium accumulation in grain of durum wheat (Triticum turgidum L. var. durum) represents a concern to consumers. In an effort to understand the regulation of Cd accumulation in maturing grain, the remobilization of 109Cd applied to stem and flag leaves was examined in two near-isogenic lines that differ in grain Cd accumulation. Absorbed 109Cd was primarily retained in the labelling flap (50-54% and 65-80% for stem and flag leaves, respectively). Cadmium exported from the stem flap initially (3 d) accumulated in the stem in a declining gradient towards the head. Subsequent remobilization of Cd deposited in the stem was associated with Cd accumulation in the grain. Cadmium exported from the flag leaf flap was primarily directed to the grain. Little (<1%) Cd accumulated in the glumes or rachis, and transport of Cd to shoot tissues below the flag leaf node was low (<1%). On average, 9% and 17% of absorbed 109Cd accumulated in the grain 14 d after labelling the stem and flag leaf, respectively. Irrespective of labelling position, the low Cd-accumulating isoline averaged 1.5-2-fold lower Cd accumulation per grain and Cd concentration in the grain than the high Cd-accumulating isoline. Cadmium accumulation in the grain was inversely correlated with Cd retention in the stem (stem labelled) and labelling flap (flag leaf labelled) for both isolines. Cadmium translocation to the grain was not inhibited by Zn when both were applied simultaneously (50 pM 109Cd; 0.5 microM 65Zn) to the flag leaf. These results show that elevated remobilization of Cd from the leaves and stem to the maturing grain may be partially responsible for the high accumulation of Cd in durum wheat grain.  相似文献   

15.
Summary The effect of Ca on the absorption and translocation of Mn, Zn and Cd in excised barley roots was studied using a multi-compartment transport box technique. A radioisotope (54Mn,65Zn or115mCd)-labelled test solution was supplied to the apexes of excised roots and the distribution pattern in the roots was examined in the absence or presence of Ca. Results obtained were as follows. Addition of Ca to the test solution reduced the absorption of Mn and inhibited drastically its translocation in excised roots. With increasing concentrations of Ca in test solutions, its inhibitory effects on the absorption and translocation of Mn became severe. Similar results were observed for the absorption and translocation of Zn. Ca in the test solution decreased the absorption and inhibited drastically the translocation of Zn; as in the case of Mn, higher concentrations of Ca had severe effects on these functions. It was also evident that the addition of Ca to the test solution reduced the absorption of Cd at all levels of Cd concentration (1, 10, and 100 μM). Cd absorption decreased with increasing concentrations of Ca in the test solution. However, Ca accelerated the translocation of Cd in excised roots supplied with test solutions containing up to 10μM Cd. At 100μM Cd, addition of Ca caused a negligibly small acceleration of Cd translocation. The accelerating effect of Ca on Cd translocation, especially “xylem exudation”, decreased markedly with the addition of 2,4-dinitrophenol, but not with the addition of chloramphenicol or p-chloromercuribenzene sulphonic acid. When barley plants were supplied with only CaSO4 during the entire growing period, that is, plants were not supplied with nutrient solution on the last day of this period, Ca had no accelerating effect on Cd translocation in excised roots.  相似文献   

16.
The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.  相似文献   

17.
Plant metal hyperaccumulator species are widely used as models to unravel the heavy metal tolerance and hyperaccumulation mechanisms. Thlaspi caerulescens is capable of tolerating and hyperaccumulating Zn, Cd, and Ni. A search for factors involved in the cellular tolerance to Ni, based on yeast screens, led to isolation of a cDNA encoding a functional nicotianamine (NA) synthase (NAS). The T. caerulescens genome appears to contain a single copy of the NAS gene named TcNAS whose expression is restricted to the leaves. The analysis of dose-response and time-course Ni treatments have revealed that the exposure to Ni triggers the accumulation of NA in the roots. Because neither TcNAS expression nor NAS activity were detected in the roots, the NA accumulation in roots is most probably the result of its translocation from the leaves. Once in the roots, NA, together with Ni, is subsequently found in the xylem, for redirection to the aerial parts. Using liquid chromatography coupled to inductively coupled plasma or electrospray ionization mass spectrometry, it has been shown that part of the Ni is translocated as a stable Ni-NA complex in the xylem sap. This circulation of NA, Ni, and NA-Ni chelates is absent in the non-tolerant non-hyperaccumulator related species T. arvense. Taken together, the results provide direct physiological and chemical evidence for NA and NA-heavy metal complex translocation in a hyperaccumulator species.  相似文献   

18.
T. Hara  Y. Sonoda 《Plant and Soil》1979,51(1):127-133
Summary Cabbage plants were grown for 55 days with a nutrient solution containing 1 and 10 ppm of V, Cr(III), Cr(VI), Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg(I), orHg(II). A comparison of the plant growth and chemical analysis revealed that Cr(VI), Cu, Cd, and Hg(II) in the solution are most toxic to the plant growth (hence detrimental to the cabbage-head formation) and Mn, Fe, and Zn are less toxic than other heavy metals, and that Mn, Zn, Co, Ni, and Cd and translocated into all the plant organs while V, Cr(III), Cr(VI), Fe, Cu, Hg(I), and Hg(II) are accumulated in the roots.  相似文献   

19.
微波消解ICP-AES法测定糙苏不同部位中的微量元素   总被引:3,自引:1,他引:2  
利用微波消解电感耦合等离子发射光谱(ICP-AES)法测定野生中药糙苏根、茎、叶、花和籽中钠、钾、钙、铁、锌、镁、锰、铜、镍、钼、铅和镉的含量,并进行了分析比较。糙苏不同用药部位的微量元素含量存在差异,其中钠、钾、钙、铁、镁在根、茎、叶、花和籽中的含量均较高,锌、锰、铜、镍、钼的含量较少,铅和镉只在根和茎中痕量存在,结果表明糙苏中含有大量人体必需的微量元素,可为进一步探讨糙苏中元素含量与其药效的相关性提供科学的理论依据。  相似文献   

20.
Phytochelatins (PCs) are glutathione-derived peptides that function in heavy metal detoxification in plants and certain fungi. Recent research in Arabidopsis has shown that PCs undergo long-distance transport between roots and shoots. However, it remains unknown which tissues or vascular systems, xylem or phloem, mediate PC translocation and whether PC transport contributes to physiologically relevant long-distance transport of cadmium (Cd) between shoots and roots. To address these questions, xylem and phloem sap were obtained from Brassica napus to quantitatively analyze which thiol species are present in response to Cd exposure. High levels of PCs were identified in the phloem sap within 24 h of Cd exposure using combined mass spectrometry and fluorescence HPLC analyses. Unexpectedly, the concentration of Cd was more than four-fold higher in phloem sap compared to xylem sap. Cadmium exposure dramatically decreased iron levels in xylem and phloem sap whereas other essential heavy metals such as zinc and manganese remained unchanged. Data suggest that Cd inhibits vascular loading of iron but not nicotianamine. The high ratios [PCs]/[Cd] and [glutathione]/[Cd] in the phloem sap suggest that PCs and glutathione (GSH) can function as long-distance carriers of Cd. In contrast, only traces of PCs were detected in xylem sap. Our results suggest that, in addition to directional xylem Cd transport, the phloem is a major vascular system for long-distance source to sink transport of Cd as PC–Cd and glutathione–Cd complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号