首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Avicennia marina is an important mangrove species with a wide geographical and climatic distribution which suggests that large amounts of genetic diversity are available for conservation and breeding programs. In this study we compare the informativeness of AFLPs and SSRs for assessing genetic diversity within and among individuals, populations and subspecies of A. marina in Australia. Our comparison utilized three SSR loci and three AFLP primer sets that were known to be polymorphic, and could be run in a single analysis on a capillary electrophoresis system, using different- colored fluorescent dyes. A total of 120 individuals representing six populations and three subspecies were sampled. At the locus level, SSRs were considerably more variable than AFLPs, with a total of 52 alleles and an average heterozygosity of 0.78. Average heterozygosity for AFLPs was 0.193, but all of the 918 bands scored were polymorphic. Thus, AFLPs were considerably more efficient at revealing polymorphic loci than SSRs despite lower average heterozygosities. SSRs detected more genetic differentiation between populations (19 vs 9%) and subspecies (35 vs 11%) than AFLPs. Principal co-ordinate analysis revealed congruent patterns of genetic relationships at the individual, population and subspecific levels for both data sets. Mantel testing confirmed congruence between AFLP and SSR genetic distances among, but not within, population comparisons, indicating that the markers were segregating independently but that evolutionary groups (populations and subspecies) were similar. Three genetic criteria of importance for defining priorities for ex situ collections or in situ conservation programs (number of alleles, number of locally common alleles and number of private alleles) were correlated between the AFLP and SSR data sets. The congruence between AFLP and SSR data sets suggest that either method, or a combination, is applicable to expanded genetic studies of mangroves. The codominant nature of SSRs makes them ideal for further population-based investigations, such as mating-system analyses, for which the dominant AFLP markers are less well suited. AFLPs may be particularly useful for monitoring propagation programs and identifying duplicates within collections, since a single PCR assay can reveal many loci at once. Received: 3 October 2000 / Accepted: 19 February 2001  相似文献   

2.
A comparison of the different methods of the estimation of genetic diversity is important to evaluate their utility as a tool in germplasm conservation and plant breeding. Amplified fragment length polymorphism (AFLP), microsatellites or SSR and morphological traits markers were used to evaluate 45 sorghum germplasm for genetic diversity assessment and discrimination power. The mean polymorphism information content (PIC) values were 0.65 (AFLPs) and 0.46 (SSRs). The average pairwise genetic distance estimates were 0.57 (morphological traits), 0.62 (AFLPs) and 0.60 (SSRs) markers data sets. The Shannon diversity index was higher for morphological traits (0.678) than AFLP (0.487) and SSR (0.539). The correlation coefficients obtained by the Mantel matrix correspondence test, which was used to compare the cophenetic matrices for the different markers, showed that estimated values of genetic relationship given for AFLP and SSR markers, as well as for morphological and SSR markers were significantly related (p <0.001). However, morphological and AFLP data showed non-significant correlation (p >0.05). Both data sets from AFLP and SSR allowed all accessions to be uniquely identified; two accessions could not be distinguished by the morphological data. In summary, AFLP and SSR markers proved to be efficient tools in assessing the genetic variability among sorghum genotypes. The patterns of variation appeared to be consistent for the three marker systems, and they can be used for designing breeding programmes, conservation of germplasm and management of sorghum genetic resources.  相似文献   

3.
利用 RFLP、SSR.AFLP和RAPD 4种分子标记方法研究了 15个玉米(Zea mays L.)自交系的遗传多样性,同时对4种标记系统进行比较。在供试材料中筛选到具多态性的RFLP探针酶组合56个,66对SSR引物,20个RAPD引物和9个AFLP引物组合,分别检测到多态性带167、201、87和108条。SSR标记位点的平均多态性信息量(PIC)最大(0.54),AFLP标记位点最小(0.36),但AFLP标记具有最高的多态性检测效率(Ai,32.2)。4种分子标记所得遗传相似系数相关性显著,比较相关系数表明 RAPD可靠性较低。依据 4种分子标记结果将 15个供试自交系划分为塘四平头、旅大红骨、兰卡斯特、瑞德和PN共5个类群,与系谱分析基本一致。认为SSR和RFLP两种分子标记方法适合进行玉米种质遗传多样性的研究。  相似文献   

4.
Knowledge about genetic variability of a crop allows for more efficient and effective use of resources in plant improvement programs. The genetic variation within temperate maize has been studied extensively, but the levels and patterns of diversity in tropical maize are still not well understood. Brazilian maize germplasm represents a very important pool of genetic diversity due to many past introductions of exotic material. To improve our knowledge of the genetic diversity in tropical maize inbred lines, we fingerprinted 85 lines with 569 AFLP bands and 50 microsatellite loci. These markers revealed substantial variability among lines, with high rates of polymorphism. Cluster analysis was used to identify groups of related lines. Well-defined groups were not observed, indicating that the tropical maize studied is not as well organized as temperate maize. Three types of genetic distance measurements were applied (Jaccard’s coefficient, Modified Rogers’ distance and molecular coefficient of coancestry), and the values obtained with all of them indicated that the genetic similarities were small among the lines. The different coefficients did not substantially affect the results of cluster analysis, but marker types had a large effect on genetic similarity estimates. Regardless of genetic similarity coefficient used, estimates based on AFLPs were poorly correlated with those based on SSRs. Analyses using AFLP and SSR data together do not seem to be the most efficient manner of assessing variability in highly diverse materials because the result was similar to using AFLPs alone. It was seen that molecular markers can help to organize the genetic variability and expose useful diversity for breeding purposes.  相似文献   

5.
6.
Common bean is an important and diverse crop legume with several wild relatives that are all part of the Phaseoleae tribe of tropical crop legumes. Sequence databases have been a good source of sequences to mine for simple sequence repeats (SSRs). The objective of this research was to evaluate 14 sequence collections from common bean for SSRs and to evaluate the diversity of the polymorphic microsatellites derived from these collections. SSRs were found in 10 of the GenBank sequence collections with an average of 11.3% of sequences containing microsatellite motifs. The most common motifs were based on tri- and dinucleotides. In a marker development programme, primers were designed for 125 microsatellites which were tested on a panel of 18 common bean genotypes. The markers were named as part of the bean microsatellite-database (BMd) series, and the average polymorphism information content was 0.404 for polymorphic markers and predicted well the genepool structure of common beans and the status of the wild and cultivated accessions that were included in the study. Therefore, the BMd series of microsatellites is useful for multiple studies of genetic relatedness and as anchor markers in future mapping of wide crosses in the species.  相似文献   

7.
Microsatellites or SSRs (single sequence repeats) have been used to construct and integrate genetic maps in crop species, including Phaseolus vulgaris. In the present study, 3 cDNA libraries generated by the Bean EST project (http://lgm.esalq.usp.br/BEST/), comprising a unigene collection of 3126 sequences and a genomic microsatellite-enriched library, were analyzed for the presence of SSRs. A total of 219 expressed sequence tags (ESTs) were found to carry 240 SSRs (named EST-SSR), whereas 714 genomic sequences contained 471 SSRs (named genomic-SSR). A subset of 80 SSRs, 40 EST-SSRs, and 40 genomic-SSRs were evaluated for molecular polymorphism in 23 genotypes of cultivated beans from the Mesoamerican and Andean genetic pools, including Brazilian cultivars and 2 related species. Of the common bean genotypes, 31 EST-SSR loci were polymorphic, yielding 2-12 alleles as compared with 26 polymorphic genomic-SSRs, accounting for 2-7 alleles. Cluster analysis from data using both genic and genomic-SSR revealed a clear separation between Andean and Mesoamerican beans. The usefulness of these loci for distinguishing bean genotypes and genetic mapping is discussed.  相似文献   

8.
Genetic diversity analysis of common beans based on molecular markers   总被引:1,自引:0,他引:1  
A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.  相似文献   

9.
Genotypic diversity has been detected among aromatic grapevines (Vitis vinifera) by molecular markers (AFLPs). The 22 primer-pairs generated a total of 1,331 bands of which 564 (40%) were polymorphic over all the genotypes. The bootstrap analysis pointed out that a large number of polymorphic bands (200–400) has to be used for a better estimation of the genetic distances among genotypes; 383 polymorphic AFLP bands were used for the cluster and the principal coordinate analyses because they did not present missing data across all the genotypes. The cluster analysis (UPGMA), based on polymorphic AFLP markers, revealed no relationship between the Moscato and Malvasia grapevines. The Malvasias, unlike the Moscatos distinguished by their distinct muscat aroma, have to be considered a more complex group because it includes muscat and non-muscat grapevines. The principal coordinate analysis (PCO) confirmed the pattern of the cluster analysis only for those varieties which presented a low coefficient of dissimilarity, while for the other varieties there was no correspondence between the two analyses. The pattern of aggregation among aromatic grapevines in the cluster and principal coordinate analyses does not support any classification that might include an aromatic grapevine group in V. vinifera. Even though some synonyms and homonyms are present among aromatic grapevines (V. vinifera), genetic diversity exists among genotypes in AFLP markers.Communicated by H.F. Linskens  相似文献   

10.
中国食用向日葵种质资源遗传变异的RAPD及AFLP分析   总被引:7,自引:0,他引:7  
本研究采用RAPD和AFLP方法对23个中国不同地区的食用向日葵(Helianthus annuus L.)骨干品种进行了遗传变异分析,同时对两种标记系统进行了比较。26个RAPD引物产生了总计192条DNA条带,大小分布 于0.26kb-1.98kb之间,其中165条(86.12%)具有多态性,每条引物产生DNA条带的平均数为7.38。8对AFLP引物组合共产生了576条带,分布于100bp-500bp之间,其中的341条具有多态性,多态百分率为76.00%,每对引物组合产生DNA条带的平均数为72。RAPD方法检测的每位点有效等位基因数(1.76)大于AFLP(1.65),AFLP标记位点的平均多态性信息量(PIC)(0.38)低于RAPD标记位点PIC(0.41),但AFLP标记具有很高的多态性检测效率(Ai=38.52)。用RAPD标记分析23个食用向日葵材料的亲缘关系,Nei氏相似性系数分布在47.84%-82.06%,平均相似性系数为0.6495,而采用AFLP的Nei氏相似性系数分布在54.15%-83.52%,平均相似性系数为0.6884。RAPD数据的标准差为0.13,而AFLP数据的标准差为0.08。因此,采用RAPD和AFLP方法分析食用向日葵遗传变异,RAPD标记具有较低相似性系数和较高方差而AFLP则相反。源于两种不同标记的遗传相似矩阵的相关系数为0.51,说明采用RAPD和AFLP系统分析食用向日葵遗传变异得到的结果有一定的相关性,无论采用RAPD还是AFLP标记进行聚类分析,都将23个不同基因型的食用向日葵材料分成了三个类群。  相似文献   

11.
利用SSR和AFLP两种分子标记技术,分析了52份转基因抗虫棉品种(系)的遗传多样性。结果表明:在61对SSR引物中,有4对引物在供试材料中表现出多态性,共扩增出102个标记,其中多态性标记25个,多态性百分率为24.51%,每对引物的扩增带数变化在17~30之间;在100对AFLP引物中,有9对引物在供试材料中产生多态性,共扩增出618个标记,多态性标记33个,占总数的5.34%,每对引物组合扩增的标记数分布于47~81之间。成对品种的欧式距离变化在2.00~5.57之间,平均值为4.21,单一品种欧氏距离的平均值分布在3.73~4.75之间,表明不同品种之间遗传差异不大。基于SSRs和AFLPs多态性数据的聚类分析,可以将供试材料划分为3个类群(SAGs),但类群划分与品种地理来源不十分吻合。  相似文献   

12.
Chybicki IJ  Oleksa A  Burczyk J 《Heredity》2011,107(6):589-600
Habitat fragmentation can have severe genetic consequences for trees, such as increased inbreeding and decreased effective population size. In effect, local populations suffer from reduction of genetic variation, and thus loss of adaptive capacity, which consequently increases their risk of extinction. In Europe, Taxus baccata is among a number of tree species experiencing strong habitat fragmentation. However, there is little empirical data on the population genetic consequences of fragmentation for this species. This study aimed to characterize local genetic structure in two natural remnants of English yew in Poland based on both amplified fragment length polymorphism (AFLP) and microsatellite (SSR) markers. We introduced a Bayesian approach that estimates the average inbreeding coefficient using AFLP (dominant) markers. Results showed that, in spite of high dispersal potential (bird-mediated seed dispersal and wind-mediated pollen dispersal), English yew populations show strong kinship structure, with a spatial extent of 50–100 m, depending on the population. The estimated inbreeding levels ranged from 0.016 to 0.063, depending on the population and marker used. Several patterns were evident: (1) AFLP markers showed stronger kinship structure than SSRs; (2) AFLP markers provided higher inbreeding estimates than SSRs; and (3) kinship structure and inbreeding were more pronounced in denser populations regardless of the marker used. Our results suggest that, because both kinship structure and (bi-parental) inbreeding exist in populations of English yew, gene dispersal can be fairly limited in this species. Furthermore, at a local scale, gene dispersal intensity can be more limited in a dense population.  相似文献   

13.
In order to get an overview on the genetic relatedness of sorghum (Sorghum bicolor) landraces and cultivars grown in low-input conditions of small-scale farming systems, 46 sorghum accessions derived from Southern Africa were evaluated on the basis of amplified fragment length polymorphism (AFLPs), random amplified polymorphic DNAs (RAPDs) and simple sequence repeats (SSRs). By this approach all sorghum accessions were uniquely fingerprinted by all marker systems. Mean genetic similarity was estimated at 0.88 based on RAPDs, 0.85 using AFLPs and 0.31 based on SSRs. In addition to this, genetic distance based on SSR data was estimated at 57 according to a stepwise mutation model (Deltamu-SSR). All UPGMA-clusters showed a good fit to the similarity estimates (AFLPs: r = 0.92; RAPDs: r = 0.88; SSRs: r = 0.87; Deltamu-SSRs: r = 0.85). By UPGMA-clustering two main clusters were built on all marker systems comprising landraces on the one hand and newly developed varieties on the other hand. Further sub-groupings were not unequivocal. Genetic diversity (H, DI) was estimated on a similar level within landraces and breeding varieties. Comparing the three approaches to each other, RAPD and AFLP similarity indices were highly correlated (r = 0.81), while the Spearman's rank correlation coefficient between SSRs and AFLPs was r = 0.57 and r = 0.51 between RAPDs and SSRs. Applying a stepwise mutation model on the SSR data resulted in an intermediate correlation coefficient between Deltamu-SSRs and AFLPs (r = 0.66) and RAPDs ( r = 0.67), respectively, while SSRs and Deltamu-SSRs showed a lower correlation coefficient (r = 0.52). The highest bootstrap probabilities were found using AFLPs (56% on average) while SSR, Deltamu-SSR and RAPD-based similarity estimates had low mean bootstrap probabilities (24%, 27%, 30%, respectively). The coefficient of variation (CV) of the estimated genetic similarity decreased with an increasing number of bands and was lowest using AFLPs.  相似文献   

14.
Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.  相似文献   

15.
Genetic identity and relatedness of the durum wheat Graziella Ra, four Italian commercial durum cultivars (Cappelli, Grazia, Flaminio and Svevo) and Kamut were evaluated using amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs) and α-gliadin gene sequence analysis. Our primary objective was to study molecular genetic diversity in such a set of wheats including three modern (Grazia, Flaminio and Svevo) and three older (Cappelli, Kamut and Graziella Ra) durum accessions. Specifically, we aimed at determining the relationship between the historic accession Graziella Ra and Kamut, which is considered an ancient relative of the durum subspecies. Obtained results revealed that (1) both AFLP and SSR molecular markers detected highly congruent patterns of genetic diversity among the accessions showing nearly similar efficiency; (2) for AFLPs, percentage of polymorphic loci within accession ranged from 6.57% to 19.71% (mean, 12.77%) and for SSRs, from 0% to 57.14% (mean, 28.57%); (3) principal component analysis of genetic distance among accessions showed the first two axes accounting for 58.03% (for AFLPs) and 61.60% (for SSRs) of the total variability; (4) for AFLPs, molecular variance was partitioned into 80% (variance among accessions) and 20% (within accession) and for SSRs, into 73% (variance among accessions) and 27% (within accession); (5) cluster analysis of AFLPs and SSRs datasets displayed Graziella Ra and Kamut constantly grouped into the same cluster; and (6) molecular comparison of α-gliadin gene sequences showed Graziella Ra and Kamut in separate clusters. All these findings support the hypothesis that Graziella Ra and Kamut, although very similar, at least in the little part of the genome investigated by molecular markers employed in this study, might be considered as distinct accessions.  相似文献   

16.
Data on AFLP (eight primer pairs) and 14 phenotypic traits, collected on 55 elite and exotic bread wheat genotypes, were utilized for estimations of genetic diversity. We earlier used these 55 genotypes for a similar study using SSRs and SAMPL. As many as 615 scorable AFLP bands visualized included 287 (46.6%) polymorphic bands. The phenotypic traits included yield and its component traits, as well as physiomorphological traits like flag leaf area. Dendrograms were prepared using cluster analysis based on Jaccard's similarity coefficients in case of AFLP and on squared Euclidean distances in case of phenotypic traits. PCA was conducted using AFLP data and a PCA plot was prepared, which was compared with clustering patterns in two dendrograms, one each for AFLP and phenotypic traits. The results were also compared with published results that included studies conducted elsewhere using entirely different wheat germplasm and our own SSR and SAMPL studies based on the same 55 genotypes used in the present study. It was shown that molecular markers are superior to phenotypic traits and that AFLP and SAMPL are superior to other molecular markers for estimation of genetic diversity. On the basis of AFLP analysis and keeping in view the yield performance and stability, a pair of genotypes (E3876 and E677) was recommended for hybridization in order to develop superior cultivars.  相似文献   

17.
利用一个F2作图群体(X178×B73),首先构建了一个含有130个SSRs的玉米连锁框架图,然后用119个AFLPs位点增加图谱密度,得到一个全长1659·3cM,标记间平均间距6·66cM的玉米相对饱和连锁图。同时,对SSRs和AFLPs的一些遗传特性进行了分析,探讨了AFLP标记进行共显性分析的一种新方法。分析表明SSRs和AFLPs分子标记具有多态性和可靠性高等特点,是构建高密度分子标记遗传连锁图的有效技术。加密的玉米遗传连锁图谱为比较基因组研究、数量性状位点(quantitativetraitloci,QTLs)克隆、杂种优势机理研究以及标记辅助选择等提供了技术基础。  相似文献   

18.
A sound knowledge of the genetic diversity among germplasm is vital for strategic germplasm collection, maintenance, conservation and utilisation. Genomic simple sequence repeats (SSRs) and random amplified microsatellite polymorphism (RAMPO) markers were used to analyse diversity and relationships among 48 pepper (Capsicum spp.) genotypes originating from nine countries. These genotypes covered 4 species including 13 germplasm accessions, 30 improved lines of 4 domesticated species and 5 landraces derived from natural interspecific crosses. Out of 106 SSR markers, 25 polymorphic SSR markers (24 %) detected a total of 76 alleles (average, 3.04; range, 2–5). The average polymorphic information content (PIC) was 0.69 (range, 0.29–0.92). Seventeen RAMPO markers produced 87 polymorphic fragments with average PIC of 0.63 (range, 0.44–0.81). Dendrograms based on SSRs and RAMPOs generated two clusters. All 38 Capsicum annuum genotypes and an interspecific landrace clustered together, whereas nine non-annuum (three Capsicum frutescens, one Capsicum chinense, one Capsicum baccatum and four interspecific landraces) genotypes clustered separately. Genetic variation within non-annuum genotypes was greater than the C. annuum genotypes. Distinctness of interspecific derivative landraces grown in northeast India was validated; natural crossing between sympatric Capsicum species has been proposed as the mechanism of their origin.  相似文献   

19.
Genetic diversity of 50 Phaeoisariopsis griseola isolates collected from different agroecological zones in Kenya was studied using group‐specific primers and amplified fragment length polymorphism (AFLP) markers. Group‐specific primers differentiated the isolates into Andean and Mesoamerican groups, corresponding to the two common‐bean gene pools. Significant polymorphisms were observed with all the AFLP primer combinations used, reflecting a wide genetic diversity in the P. griseola population. A total of 207 fingerprints was generated, of which 178 were polymorphic. Cluster analysis of the polymorphic bands also separated the isolates into the two groups defined by group‐specific primers. All the isolates examined were grouped into three virulence populations; Andean, Afro‐Andean and Mesoamerican, and their genetic diversity measured. On average, greater diversity (91%) was detected within populations than between populations (9%). The genetic distance between Andean and Mesoamerican populations was higher (D = 0.0269) than between Andean and Afro‐Andean (D = 0.0095). The wide genetic diversity reported here has significant implications in breeding for resistance to angular leaf spot and should be taken into consideration when screening and deploying resistant bean genotypes.  相似文献   

20.
Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon   总被引:14,自引:0,他引:14  
Three different types of molecular markers, RAPD, AFLP and RFLP were used to measure genetic diversity among six genotypes of Cucumis melo L. Each line represented a different melon genotype: Piel de Sapo, Ogen, PI161375, PI414723, Agrestis and C105. A number of polymorphic RAPD, AFLP and RFLP bands were scored on all materials and the genetic similarity measured. Clustering analysis performed with the three types of markers separated the genotypes into two main groups: (1) the sweet type, cultivated melons and (2) the exotic type, not cultivated melons. While the data obtained suggest that all three types of markers are equally informative, AFLPs showed the highest efficiency in detecting polymorphism. Received: 30 December 1999 / Accepted: 24 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号