首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

2.

Questions

Do vascular plant species richness and beta‐diversity differ between managed and structurally complex unmanaged stands? To what extent do species richness and beta‐diversity relate to forest structural attributes and heterogeneity?

Location

Five national parks in central and southern Italy.

Methods

We sampled vascular plant species composition and forest structural attributes in eight unmanaged temperate mesic forest stands dominated or co‐dominated by beech, and in eight comparison stands managed as high forests with similar environmental features. We compared plant species richness, composition and beta‐diversity across pairs of stands (unmanaged vs managed) using GLMM s. Beta‐diversity was quantified both at the scale of each pair of stands using plot‐to‐plot dissimilarity matrices (species turnover), and across the whole data set, considering the distance in the multivariate species space of individual plots from their centroid within the same stand (compositional heterogeneity). We modelled the relationship between species diversity (richness and beta‐diversity) and forest structural heterogeneity and individual structural variables using GLMM s and multiple regression on distance matrices.

Results

Species composition differed significantly between managed and unmanaged stands, but not richness and beta‐diversity. We found weak evidence that plant species richness increased with increasing levels of structural heterogeneity and canopy diversification. At the scale of individual stands, species turnover was explained by different variables in distinct stands, with variables related to deadwood quantity and quality being selected most often. We did not find support for the hypothesis that compositional heterogeneity varies as a function of forest structural characteristics at the scale of the whole data set.

Conclusions

Structurally complex unmanaged stands have a distinct herb layer species composition from that of mature stands in similar environmental conditions. Nevertheless, we did not find significantly higher levels of vascular plant species richness and beta‐diversity in unmanaged stands. Beta‐diversity was related to patterns of deadwood accumulation, while for species richness the evidence that it increases with increasing levels of canopy diversification was weak. These results suggest that emulating natural disturbance, and favouring deadwood accumulation and canopy diversification may benefit some, but not all, facets of plant species diversity in Apennine beech forests.
  相似文献   

3.
Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory–diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany’s largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory–tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

4.
Vegetation structure can often determine insect herbivore fauna in forests, but this mechanism has been demonstrated in seasonally dry tropical forests (SDTFs) only at small spatial scales. In this study we evaluated the effects of the geographical location of SDTFs and vegetation structure on insect herbivore communities (leaf-chewing and sap-sucking guilds) in three Brazilian ecoregions (Cerrado, Cerrado/Caatinga transition, and Caatinga). We tested the following predictions: (1) insect herbivore species composition, richness, abundance and beta diversity differ among forests in different ecoregions; (2) insect richness, abundance and beta diversity are positively related to tree richness and density; (3) spatial turnover of species is the primary mechanism that generates herbivorous insect β-diversity in different ecoregions, and is positively influenced by tree richness. The composition, richness, and abundance of herbivorous insects differed over SDFs along the gradient of Cerrado and Caatinga. Both herbivore guilds responded positively to tree richness. Tree density only determined the richness and abundance of sap-sucking herbivores. Insect β-diversity was similar among Cerrado and transition areas, but lower in Caatinga itself; β-diversity was also positively affected by tree richness. Species turnover, as opposed to nestedness, was the main mechanism generating β-diversity, but itself was not related to tree richness. We demonstrate in this study the importance of landscape diversity and availability of local resources for herbivorous insect communities, and we emphasize the importance of SDTF conservation in different ecoregions as a result of species turnover.  相似文献   

5.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

6.
Mountainous areas of the Korean Peninsula are among the biodiversity hotspots of the world's temperate forests. Understanding patterns in spatial distribution of their species richness requires explicit consideration of different environmental drivers and their effects on functionally differing components. In this study, we assess the impact of both geographical and soil variables on the fine-scale (400 m2) pattern of plant diversity using field data from six national parks, spanning a 1300 m altitudinal gradient. Species richness and the slopes of species–area curves were calculated separately for the tree, shrub and herb layer and used as response variables in regression tree analyses. A cluster analysis distinguished three dominant forest communities with specific patterns in the diversity–environment relationship. The most widespread middle-altitude oak forests had the highest tree richness but the lowest richness of herbaceous plants due to a dense bamboo understory. Total richness was positively associated with soil reaction and negatively associated with soluble phosphorus and solar radiation (site dryness). Tree richness was associated mainly with soil factors, although trees are frequently assumed to be controlled mainly by factors with large-scale impact. A U-shaped relationship was found between herbaceous plant richness and altitude, caused by a distribution pattern of dwarf bamboo in understory. No correlation between the degree of canopy openness and herb layer richness was detected. Slopes of the species–area curves indicated the various origins of forest communities. Variable diversity–environment responses in different layers and communities reinforce the necessity of context-dependent differentiation for the assessment of impacts of climate and land-use changes in these diverse but intensively exploited regions.  相似文献   

7.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

8.
We conducted a field study to determine the relative contributions of aspen (Populus tremuloides), meadow, and conifer communities to local and landscape-level plant species diversity in the Sierra Nevada and southern Cascade Range, northeastern California, USA. We surveyed plant assemblages at 30 sites that included adjacent aspen, conifer, and meadow communities across a 10,000-km2 region. We statistically investigated patterns in local and landscape-scale plant diversity within and among the three vegetation types. Summing across sites, aspen stands supported more plant species overall and more unique plant species than either meadow or conifer communities. Local richness and diversity did not differ between aspen and meadow plots; conifer forest plots were significantly lower in both measures. Heterogeneity in species composition was higher for aspen forest than for meadows or conifer forest, both within sites and between sites. Plant communities in aspen stands shared less than 25% of their species with adjacent vegetation in conifer and meadow plots. Within aspen forest, we found a negative relationship between total canopy cover and plant diversity. Our results strongly support the idea that plant communities of aspen stands are compositionally distinct from adjacent meadows and conifer forest, and that aspen forests are a major contributor to plant species diversity in the study region. Current patterns of aspen stand succession to conifer forest on many sites in the semiarid western US are likely to reduce local and landscape-level plant species diversity, and may also have negative effects on other ecosystem functions and services provided by aspen forest.  相似文献   

9.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

10.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

11.
The relationships between species diversity and ecosystem functions are in the focus of recent ecological research. However, until now the influence of species diversity on ecosystem processes such as decomposition or mineral cycling is not well understood. In deciduous forests, spiders are an integral part of the forest floor food web. In the present study, patterns of spider diversity and community structure are related to diversity of deciduous forest stands in the Hainich National Park (Thuringia). In 2005, pitfall trapping and quantitative forest floor sampling were conducted in nine plots of forest stands with one (Diversity Level 1), three (DL 2) and five (DL 3) major deciduous tree species. Species richness, measured with both methods, as well as spider abundance in forest floor samples were highest in stands with medium diversity (DL 2) and lowest in pure beech stands (DL 1). The Shannon-Wiener index and spider numbers in pitfall traps decreased from DL 1 to DL 3, while the Shannon-Wiener index in forest floor samples increased in the opposite direction. Spider community composition differed more strongly between single plots than between diversity levels. Altogether, no general relationship between increasing tree species diversity and patterns of diversity and abundance in spider communities was found. It appears that there is a strong influence of single tree species dominating a forest stand and modifying structural habitat characteristics such as litter depth and herb cover which are important for ground-living spiders.  相似文献   

12.
We used canopy fogging to study the high (20–26 m), intermediate (13–19 m) and low (5–6 m) strata in three European beech patches (Fagus sylvatica) in nine months (2005–2007) and estimate species richness and diversity of arboreal spiders. Eight species (10%) were previously unseen in European beech trees, and one of these is likely a new species. Moreover, two species are on the Bavarian red list. Our results revealed that the high stratum of the old-growth trees provided unique resources and possessed the greatest diversity and evenness, whereas intermediate and low strata had high similarity in respect to diversity, dominance, species, and family composition. Since the majority of beech forests consists of mature and young trees in Central Europe, and old-growth forests are rarely preserved, we recommend young beech be used in a sampling protocol for rapid biodiversity assessment. However, adding samples from the two higher strata to the lowest stratum (55 species), almost doubled the estimated species richness (102 species). This suggests that the lower stratum alone does not represent a true image of the total canopy fauna inventory in this, and likely other, beech stands. To complete this comprehensive inventory in European beeches, the Chao1 predicted that additional sampling would be needed in the highest stratum, where there is a high probability to find previously undetected species in a next survey. Our study clearly shows that neglecting the crowns of the largest, tallest trees risks underestimating the overall spider diversity in Central European forests.  相似文献   

13.
Deadwood-associated species are increasingly targeted in forest biodiversity conservation. In order to improve structural biodiversity indicators and sustainable management guidelines, we need to elucidate ecological and anthropogenic drivers of saproxylic diversity. Herein we aim to disentangle the effects of local habitat attributes which presumably drive saproxylic beetle communities in temperate lowland deciduous forests. We collected data on saproxylic beetles in 104 oak and 49 beech stands in seven French lowland forests and used deadwood, microhabitat and stand features (large trees, openness) as predictor variables to describe local forest conditions. Deadwood diversity and stand openness were consistent key habitat features for species richness and composition in deciduous forests. Large downed deadwood volume was a significant predictor of beetle species richness in oak forests only. In addition, the density of cavity- and fungus-bearing trees had weak but significant effects. We recommend that forest managers favor the local diversification of deadwood types, especially the number of combinations of deadwood positions and tree species, the retention of large downed deadwood and microhabitat-bearing trees in order to maximize the saproxylic beetle diversity at the stand scale in deciduous forests. To improve our understanding of deadwood-biodiversity relationships, further research should be based on targeted surveys on species-microhabitat relationships and should investigate the role of landscape-scale deadwood resources and of historical gaps in continuity of key features availability at the local scale.  相似文献   

14.
The effects of black-locust invasion on plant forest diversity are still poorly investigated. Vascular plants are likely to be influenced by increasing nutrient availability associated with the nitrogen-fixing activity of black-locust, whereas it is not clear if, along with stand aging, black-locust formations regain forest species. The main aim of the present study was to test whether the increase of black-locust stand age promoted a plant variation in mature stands leading to assemblages similar to those of native forests. Therefore, plant richness and composition of stands dominated by native trees were compared with pure black-locust stands of different successional stages. Our study confirmed that the replacement of native forests by pure black-locust stands causes both plant richness loss and shifts in species composition. In black-locust stands plant communities are dominated by nitrophilous species and lack many of the oligothrophic and acidophilus species typical of native forests. Plant communities of native forests are more diverse with respect to pure black-locust stands, suggesting that black-locust invasion also causes a homogenization of the plant forest biota. We did not detect differences across the successional gradient of black-locust stands, and mature stands do not recover the diversity of plant species which are lost by the replacement of the native forests by black-locust. Accordingly some efforts in reducing the negative impacts of black-locust invasion on plant forest biota should be focused at least in those areas where conservation is among management priorities, such in the case of habitats included in the Habitat Directive (92/43 ECE).  相似文献   

15.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

16.
Uneven-aged management of conifer plantations is proposed as a way to increase the value of these forests for the conservation of bird diversity. To test this assumption, we compared the impact of four common silvicultural systems on bird communities, defined by cutblock size (large in even-aged silvicultural systems/smaller in uneven-aged silvicultural systems) and tree species composition (spruce/beech) in the Belgian Ardenne where beech forests have been replaced by spruce plantations. The abundances of bird species were surveyed in young, medium-aged and mature stands in 3–5 forests per silvicultural system (66 plots in all). The effect of silvicultural systems on bird species richness, abundance and composition were analysed both at the plot and at the silvicultural system levels. In plots of a given age, beech stands were richer in species. The composition of bird species at the plot level was explained by stand age and tree composition, but weakly so by stand evenness. For the silvicultural systems, bird species richness was significantly higher in even-aged and in beech forests, and bird species composition depended on the silvicultural system. This study emphasises the importance of maintaining native beech stands for birds and suggests that uneven-aged management of conifer plantations does not provide a valuable improvement of bird diversity comparatively with even-aged systems.  相似文献   

17.
From regional to global scales, anthropogenic environmental change is causing biodiversity loss and reducing ecosystem functionality. Previous studies have investigated the relationship between plant diversity and functional insect communities in temperate and also in tropical grasslands and forests. However, few studies have explored these dynamics in subtropical forests. Here, cavity-nesting Hymenoptera and associated parasitoids were collected across a controlled tree diversity experiment in subtropical China to test how predatory wasps, bees and parasitoids respond to tree species richness. Abundance and species richness of predatory wasps and parasitoids were positively correlated with tree species richness, while bee abundance and bee species richness were unrelated to tree species richness. Our results indicate that tree species richness increases the abundance and species richness of important communities such as predators and parasitoids. Moreover, the results highlight the importance of subtropical forests in maintaining abundance and species richness of key functional insect groups.  相似文献   

18.
Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species richness and community heterogeneity within a mosaic of grassland, oak savanna, oak woodland, and forest communities. Species richness was assessed for all vascular plant species and for three plant functional groups: grasses, forbs, and woody plants. Understory species richness and community heterogeneity were maximized at biennial fire frequencies, consistent with predictions of the intermediate disturbance hypothesis. However, overstory tree species richness was highest in unburned units and declined with increasing fire frequency. Maximum species richness was observed in unburned units for woody species, with biennial fires for forbs, and with near-annual fires for grasses. Savannas and woodlands with intermediate and spatially variable tree canopy cover had greater species richness and community heterogeneity than old-field grasslands or closed-canopy forests. Functional group species richness was positively correlated with functional group cover. Our results suggest that annual to biennial fire frequencies prevent shrubs and trees from competitively excluding grasses and prairie forbs, while spatially variable shading from overstory trees reduces grass dominance and provides a wider range of habitat conditions. Hence, high species richness in savannas is due to both high sample point species richness and high community heterogeneity among sample points, which are maintained by intermediate fire frequencies and variable tree canopy cover.  相似文献   

19.
Question: What are the responses of epiphytic lichens to the intensity of management along a large environmental gradient in Mediterranean Quercus forests? Location: Central Spain. Methods: This study was carried out on 4590 trees located in 306 forest stands dominated by Quercus faginea or Quercus ilex ssp. ballota. The effect of forest management and other predictor variables on several species diversity indicators were studied. Variables modelled were total species richness, cyanolichen richness and community composition. A large number of predictor variables were included: forest fragmentation (patch size, stand variability), climate and topographic (altitude, slope, sun radiation, annual rainfall and mean annual temperature) and intensity of management. General linear models and constrained ordination techniques were used to model community traits and species composition, respectively. Results: Total richness and especially cyanolichens richness were significantly and negatively affected by the intensity of management. Lichen composition was influenced by management intensity, climatic and topographic variables and stand variability. Conclusions: In Mediterranean forests, human activities related to forestry, agricultural and livestock use cause impoverishment of lichen communities, including the local disappearance of the most demanding species. The conservation of unmanaged forests with a dense canopy is crucial for lichen diversity.  相似文献   

20.
From regional to global scales, anthropogenic environmental change is causing biodiversity loss and reducing ecosystem functionality. Previous studies have investigated the relationship between plant diversity and functional insect communities in temperate and also in tropical grasslands and forests. However, few studies have explored these dynamics in subtropical forests. Here, cavity-nesting Hymenoptera and associated parasitoids were collected across a controlled tree diversity experiment in subtropical China to test how predatory wasps, bees and parasitoids respond to tree species richness. Abundance and species richness of predatory wasps and parasitoids were positively correlated with tree species richness, while bee abundance and bee species richness were unrelated to tree species richness. Our results indicate that tree species richness increases the abundance and species richness of important communities such as predators and parasitoids. Moreover, the results highlight the importance of subtropical forests in maintaining abundance and species richness of key functional insect groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号