首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
4个棉花ADF基因的分子鉴定及其差异表达   总被引:4,自引:0,他引:4  
肌动蛋白解聚合因子(actin-depolymerizing factor, ADF)是一种在真核生物中广泛存在的低分子量的肌动蛋白结合蛋白,它在调控细胞内肌动蛋白纤丝的解聚合和再聚合中起着关键作用。我们在棉纤维cDNA文库中分离克隆了4个ADF基因(cDNAs),分别命名为GhADF2,GhADF3,GhADF4,GhADF5。GhADF2 cDNA 长度为705 bp,编码139个氨基酸;GhADF3 cDNA长度为819 bp,编码139个氨基酸;GhADF4 cDNA长度为804 bp,编码143个氨基酸;GhADF5 cDNA长度为644 bp,编码141个氨基酸。分析表明,GhADF2与GhADF3的氨基酸序列同源性为99%。而且,GhADF2/3与矮牵牛PeADF2之间的氨基酸序列同源性也高达89%。GhADF4与拟南芥AtADF6的亲缘关系较近,二者的氨基酸序列同源性为78%。GhADF5与拟南芥AtADF5的亲缘关系较近,氨基酸序列的同源性为83%。上述结果表明植物ADF基因在进化中具有高度保守性。RT-PCR分析表明,GhADF2在纤维中优势表达,而GhADF5基因则在子叶中表达量最高。另一方面,GhADF3和GhADF4似乎不具有组织特异性或偏爱性表达。同一组织中不同GhADF基因表达量有较大的差异,表明它们可能涉及棉花不同组织生长发育过程的调节。而且,在进化过程中,各ADF同分异构体之间可能发展形成某种功能上的差异性。  相似文献   

2.
Down-regulation of GhADF1 gene expression affects cotton fibre properties   总被引:1,自引:0,他引:1  
Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1 ) expression in the transgenic cotton plants. We observed that both the fibre length and strength of the GhADF1 -underexpressing plants increased as compared to the wild-type fibre, and transgenic fibres contained more abundant F-actin filaments in the cortical region of the cells. Moreover, the secondary cell wall of the transgenic fibre appeared thicker and the cellulose content was higher than that of the control fibre. Our results suggest that organization of actin cytoskeleton regulated by actin-associated proteins such as GhADF1 plays a critical role in the processes of elongation and secondary cell wall formation during fibre development. Additionally, our study provided a candidate intrinsic gene for the improvement of fibre traits via genetic engineering.  相似文献   

3.
Actin depolymerizing factor (ADF) is a key regulator of the organization of the actin cytoskeleton during various cellular activities. We found that ADF genes in Arabidopsis form a large family consisting of at least nine members, four of which were cloned and sequenced in this study. Comparison of genomic and cDNA sequences showed that the AtADF1, AtADF5, and AtADF6 genes all contain two introns at conserved positions. Analysis of transgenic Arabidopsis plants carrying promoter-GUS fusion constructs revealed that AtADF1 and AtADF6 are expressed in the vascular tissues of all organs, whereas expression of AtADF5 is restricted to the root tip meristem. GFP-AtADF1, GFP-AtADF5, and GFP-AtADF6 fusion proteins were found to bind to actin filaments in vivo, and to reorganize the actin cytoskeleton when transiently expressed in plant cells.  相似文献   

4.
Rapid actin turnover is essential for numerous actin‐based processes. However, how it is precisely regulated remains poorly understood. Actin‐interacting protein 1 (AIP1) has been shown to be an important factor by acting coordinately with actin‐depolymerizing factor (ADF)/cofilin in promoting actin depolymerization, the rate‐limiting factor in actin turnover. However, the molecular mechanism by which AIP1 promotes actin turnover remains largely unknown in plants. Here, we provide a demonstration that AIP1 promotes actin turnover, which is required for optimal growth of rice plants. Specific down‐regulation of OsAIP1 increased the level of filamentous actin and reduced actin turnover, whereas over‐expression of OsAIP1 induced fragmentation and depolymerization of actin filaments and enhanced actin turnover. In vitro biochemical characterization showed that, although OsAIP1 alone does not affect actin dynamics, it enhances ADF‐mediated actin depolymerization. It also caps the filament barbed end in the presence of ADF, but the capping activity is not required for their coordinated action. Real‐time visualization of single filament dynamics showed that OsAIP1 enhanced ADF‐mediated severing and dissociation of pointed end subunits. Consistent with this, the filament severing frequency and subunit off‐rate were enhanced in OsAIP1 over‐expressors but decreased in RNAi protoplasts. Importantly, OsAIP1 acts coordinately with ADF and profilin to induce massive net actin depolymerization, indicating that AIP1 plays a major role in the turnover of actin, which is required to optimize F‐actin levels in plants.  相似文献   

5.
6.
The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α‐helix 3 and forming an actin binding site together with the N‐terminus are essential for both G‐ and F‐actin binding. The basic residues on the β‐strand 5 (K82/A) and the α‐helix 4 (R135/A, R137/A) form another actin binding site that is important for F‐actin binding. Using transient expression of CFP‐tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G‐actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization.  相似文献   

7.
Proteins in the actin depolymerizing factor (ADF)/cofilin family are essential for rapid F-actin turnover, and most depolymerize actin in a pH-dependent manner. Complexes of human and plant ADF with F-actin at different pH were examined using electron microscopy and a novel method of image analysis for helical filaments. Although ADF changes the mean twist of actin, we show that it does this by stabilizing a preexisting F-actin angular conformation. In addition, ADF induces a large ( approximately 12 degrees ) tilt of actin subunits at high pH where filaments are readily disrupted. A second ADF molecule binds to a site on the opposite side of F-actin from that of the previously described ADF binding site, and this second site is only largely occupied at high pH. All of these states display a high degree of cooperativity that appears to be an integral part of F-actin.  相似文献   

8.
9.
Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin‐binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin‐depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity of ADF proteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheat ADF gene, TaADF4, was identified and characterized. TaADF4 encodes a 139‐amino‐acid protein containing five F‐actin‐binding sites and two G‐actin‐binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1), in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race, CYR23, of the stripe rust pathogen Puccinia striiformis f. sp. tritici, we observed a rapid induction in accumulation of TaADF4 mRNA. Interestingly, accumulation of TaADF4 mRNA was diminished in response to inoculation with a virulent race, CYR31. Silencing of TaADF4 resulted in enhanced susceptibility to CYR23, demonstrating a role for TaADF4 in defense signaling. Using a pharmacological‐based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin‐modifying agent latrunculin B enhanced resistance to CYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis that TaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.  相似文献   

10.
  • Verticillium wilt, an infection caused by the soilborne fungus Verticillium dahliae, is one of the most serious diseases in cotton. No effective control method against V. dahliae has been established, and the infection mechanism of V. dahliae in upland cotton remains unknown.
  • GFP‐tagged V. dahliae isolates with different pathogenic abilities were used to analyse the colonisation and infection of V. dahliae in the roots and leaves of different upland cotton cultivars, the relationships among infection processes, the immune responses and the resistance ability of different cultivars against V. dahliae.
  • Here, we report a new infection model for V. dahliae in upland cotton plants. V. dahliae can colonise and infect any organ of upland cotton plants and then spread to the entire plant from the infected organ through the surface and interior of the organ.
  • Vascular tissue was found to not be the sole transmission route of V. dahliae in cotton plants. In addition, the rate of infection of a V. dahliae isolate with strong pathogenicity was notably faster than that of an isolate with weak pathogenicity. The resistance of upland cotton to Verticillium wilt was related to the degree of the immune response induced in plants infected with V. dahliae. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton.
  相似文献   

11.

Key message

We found that Arabidopsis AtADF1 was phosphorylated by AtCDPK6 at serine 6 predominantly and the phosphoregulation plays a key role in the regulation of ADF1-mediated depolymerization of actin filaments.

Abstract

Since actin-depolymerizing factor (ADF) is highly conserved among eukaryotes, it is one of the key modulators for actin organization. In plants, ADF is directly involved in the depolymerization of actin filaments, and therefore important for F-actin-dependent cellular activities. The activity of ADF is tightly controlled through a number of molecular mechanisms, including phosphorylation-mediated inactivation of ADF. To investigate Arabidopsis ADF1 phosphoregulation, we generated AtADF1 phosphorylation site-specific mutants. Using transient expression and stable transgenic approaches, we analyzed the ADF1 phosphorylation mutants in the regulation of actin filament organizations in plant cells. By in vitro phosphorylation assay, we showed that AtADF1 is phosphorylated by AtCDPK6 at serine 6 predominantly. Chemically induced expression of AtCDPK6 can negatively regulate the wild-type AtADF1 in depolymerizing actin filaments, but not those of the mutants AtADF1(S6A) and AtADF1(S6D). These results demonstrate a regulatory function of Arabidopsis CDPK6 in the N-terminal phosphorylation of AtADF1.  相似文献   

12.
13.

Background  

The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful.  相似文献   

14.
15.
Verticillium dahliae infection leads to Verticillium wilt in cotton and other dicotyledon crops. To reduce the loss of economic crops, more attention has been focused on the key genes involved in pathogenicity of this soil‐borne plant fungal pathogen. Sho1 encodes a conserved tetraspan transmembrane protein which is a key element of the two upstream branches of the HOG‐MAPK pathway in fungi. Sho1 is required for full virulence in a wide variety of pathogenic fungi. In this study, sho1 mutant in V. dahliae (designated ΔVdsho1) was generated by Agrobacterium tumefaciens‐mediated transformation. ΔVdsho1 strain was highly sensitive to menadione (at concentration of 120 μm ) and hydrogen peroxide (at concentration of 250 μm ), displayed delayed spore germination and reduced spore production compared with the wild type and the complemented strains. During infection of host cotton plants, ΔVdsho1 exhibited impaired ability of root attachment and invasive growth. Results from the present work suggest that VdSho1 controls external sensing, virulence and multiple growth‐related traits in V. dahliae and might serve as a potential target for control of Verticillium wilt.  相似文献   

16.
A cotton fiber is a single and highly elongated ovule epidermal cell. However, the mechanism that governs the development of fiber traits remains unclear. In this study, we cloned a calcium-dependent protein kinase (GhCPK1) and an actin depolymerizing factor (GhADF1) from Gossypium hirsutum. Real-time PCR analyses indicated that the expression of GhCPK1 and GhADF1 correlated with the elongation pattern of cotton fibers. Yeast two-hybrid assays using full-length GhCPK1 and truncated forms of GhCPK1 as baits identified GhADF1 as an interactor of GhCPK1. Furthermore, GhCPK1 is capable of phosphorylating GhADF1 in vitro in a calcium-dependent manner, and the phosphorylation of GhADF1 by GhCPK1 occurs on the Ser-6 of GhADF1. In addition, we observed that the heterologous expression of the GhCPK1 gene induced longitudinal growth of the host cells by 3.18-fold, with no apparent effect on other aspects of the host cells. The results strongly suggest that GhCPK1 may regulate the function of GhADF1 by phosphorylating this protein during cotton fiber elongation.  相似文献   

17.
18.
The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following Vdahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more and less H2O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of Vdahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in Vdahliae.  相似文献   

19.
Fusarium oxysporum f. sp. lycopersici (FOL) induces resistance in pepper against the airborne pathogen Botrytis cinerea and the soil‐borne pathogen Verticillium dahliae. However, its practical use is limited due to its pathogenicity to other crops. In this study we tested several fractions of a heat‐sterilised crude FOL‐elicitor preparation to protect pepper against B. cinerea and V. dahliae. Only the protein‐free insoluble fraction of the preparation reduced B. cinerea infection. However, none of the fractions reduce V. dahliae symptoms. The insoluble protein‐free fraction induced expression of defence genes in the plant, namely a chitinase (CACHI2), a peroxidase (CAPO1), a sesquiterpene cyclase (CASC1) and a basic PR1 (CABPR1). Even though the CASC1 gene was not induced directly after treatment with the insoluble fraction in the leaves, it was induced after B. cinerea inoculation, showing a priming effect. The insoluble protein‐free FOL‐elicitor protected pepper against the airborne pathogen through a mechanism that involves induced responses in the plant, but different to the living FOL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号