首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The release of hazardous substances is a matter of concern for nanotechnology. This may include some nanoparticles, reactants, by‐products, and solvents. The use of low‐hazard solvents may reduce the hazards from nanoparticle production and nanomaterial processing. The hazards of inorganic nanoparticles may be reduced by modifying their chemical composition, surface characteristics, or structure. In nanomedicine, optimizing the balance between persistence and excretion and preventing the release of toxic degradation products may reduce hazard. In applications of fixed inorganic nanoparticles, the focus should be on preventing the release of such particles and of hazardous compounds during the product life cycle. When, after exhaustion of known hazard reduction options, significant hazard remains, other approaches merit consideration.  相似文献   

2.
Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.  相似文献   

3.
Nanotechnology is a novel emerging technology that allows the manipulation of materials at the scale comparable to the size of a single molecule (i.e., < 100 nm). There have been many new developments in this technology, resulting in complex exposure and health risk implications. Nanotechnology offers major benefits to humankind; however, there is growing concern regarding the potential adverse interactions of engineered nanoparticles at cellular or sub-cellular levels. The nanotech community is therefore experiencing growing calls for legislation to minimize or prevent exposure to nanoparticles. This article focuses on recent developments in nanotechnology including current manufacturing techniques, uses of nanoscale particles, and implications for particle toxicity and human exposure pathways. Current risk assessment methods are reviewed in the context of nanoparticle exposure routes and regulation for human and environmental health protection. This study provides a better understanding of the factors governing risks from nanoparticles and current strategies for protecting environmental and public health.  相似文献   

4.
With the rapid development of nanotechnology, nanomaterials are now being used for cancer treatment. Although studies on the application of silver nanoparticles in cancer treatment are burgeoning, few studies have investigated the toxicology mechanisms of autophagy in cancer cells under exposure to sublethal silver nanoparticles. Here, we clarified the distinct mechanisms of silver nanoparticles for the regulation of autophagy in prostate cancer PC‐3 cells under sublethal exposure. Silver nanoparticle treatment caused lysosome injury, including the decline of lysosomal membrane integrity, decrease of lysosomal quantity, and attenuation of lysosomal protease activity, which resulted in blockage of autophagic flux. In addition, sublethal silver nanoparticle exposure activated AMP‐activated protein kinase/mammalian target of rapamycin‐dependent signaling pathway to modulate autophagy, which resulted from silver nanoparticles‐induced cell hypoxia and energy deficiency. Taken together, the results show that silver nanoparticles could regulate autophagy via lysosome injury and cell hypoxia in PC‐3 cells under sublethal dose exposure. This study will provide an experimental basis for the cancer therapy of nanomaterials.  相似文献   

5.
In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology‐based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser‐induced thermal, and accompanying nano‐ and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser‐based PA‐PT nano‐theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Nanocatalysis has been a growing field over the past few decades with significant developments in understanding the surface properties of nanocatalysts. With recent advances in synthetic methods, size, shape and composition of the nanoparticles can be controlled in a well defined manner which facilitates achieving selective reaction products in multipath reactions. Nanoparticles with specific exposed crystal facets can have different reactivity than other facets for reaction intermediates, which favours selective pathways during the course of reaction. Heterogeneous catalysts have been studied extensively; nano‐sized metal particles are absorbed on mesoporus supports, facilitating access to the large surface area of the nanoparticles and hence exposure of more catalytic sites. Photocatalysis is attractive area of catalysis, in which photoinduced charge carriers are used for a variety of catalytic applications. More interestingly, clean and renewable liquid fuels energy sources such as hydrogen and methyl alcohol can be generated using photocatalysts through water splitting and CO2 reduction, respectively. Herein, we highlight the progress of nanocatalysis through metal, bimetallic nanoparticle, metal‐semiconductor hybrid nanostructures and oxide nanoparticles for various reactions.  相似文献   

7.
Nanotechnology has great potential for revolutionizing the treatment of disease, optimizing manufacturing processes and consumer products, and remediating polluted environments. Increased use and disposal of products containing nanoparticles will inevitably result in their accumulation in aquatic ecosystems via direct input and runoff from contaminated soils. Aquatic organisms are particularly susceptible to pollutants due to their large, fragile respiratory epithelium. This potential toxicity can be exacerbated by common stressors, such as changes in water temperature, salinity, pH, and oxygen levels, and must be considered in environmental risk assessments. The unique properties of manufactured nanoparticles present serious problems for risk assessment strategies, and there is a concern in the regulatory community that standard toxicological methods may be inadequate to address these compounds. Our capacity to detect and quantify nanoparticles is extremely limited, especially in complex biological, soil, or water samples. The distinctive chemistry and physical structure of each nanomaterial will determine its bioavailability, and these parameters can be altered over time or with changes in water chemistry. The use of advanced analytical techniques, such as functional genomics, proteomics, and metabolomics, can provide a global assessment of the biological response to a novel chemical and will be important in determining the potential toxicity of nanoparticles. Industry should adopt a proactive approach to identifying potential risks to aquatic ecosystems so that the benefits of nanotechnology can be fully realized.  相似文献   

8.
Inhalation of nanoparticles has been implicated in respiratory morbidity and mortality. In particular, carbon black nanoparticles are found in many different environmental exposures. Macrophages take up inhaled nanoparticles and respond via release of inflammatory mediators and in some cases cell death. Based on new data, we propose that exposure of macrophages (both a macrophage cell line and primary human alveolar macrophages) to carbon black nanoparticles induces pyroptosis, an inflammasome-dependent form of cell death. Exposure of macrophages to carbon black nanoparticles resulted in inflammasome activation as defined by cleavage of caspase 1 to its active form and downstream IL-1β release. The cell death that occurred with carbon black nanoparticle exposure was identified as pyroptosis by the protective effect of a caspase 1 inhibitor and a pyroptosis inhibitor. These data demonstrate that carbon black nanoparticle exposure activates caspase 1, increases IL-1β release after LPS priming, and induces the proinflammatory cell death, pyroptosis. The identification of pyroptosis as a cellular response to carbon nanoparticle exposure is novel and relates to environmental and health impacts of carbon-based particulates.  相似文献   

9.
Although the theoretical capacity of silicon is ten times higher than that of graphite, the overall electrode capacity of Si anodes is still low due to the low Si loading and heavy metal current collector. Here, a novel flexible 3D Si/C fiber paper electrode synthesized by simultaneously electrospraying nano‐Si‐PAN (polyacrylonitrile) clusters and electrospinning PAN fibers followed by carbonization is reported. The combined technology allows uniform incorporation of Si nanoparticles into a carbon textile matrix to form a nano‐Si/carbon composite fiber paper. The flexible 3D Si/C fiber paper electrode demonstrate a very high overall capacity of ≈1600 mAh g‐1 with capacity loss less than 0.079% per cycle for 600 cycles and excellent rate capability. The exceptional performance is attributed to the unique architecture of the flexible 3D Si/C fiber paper, i.e., the resilient and conductive carbon fiber network matrix, carbon‐coated Si nanoparticle clusters, strong adhesion between carbon fibers and Si nanoparticle clusters, and uniform distribution of Si/C clusters in the carbon fiber frame. The scalable and facile synthesis method, good mechanical properties, and excellent electrochemical performance at a high Si loading make the flexible 3D Si/C fiber paper batteries extremely attractive for plug‐in electric vehicles, flexible electronics, space exploration, and military applications.  相似文献   

10.
The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Interestingly pharmaceutical sciences are using nanoparticles to reduce toxicity and side effects of drugs and up to recently did not realize that carrier systems themselves may impose risks to the patient. The kind of hazards that are introduced by using nanoparticles for drug delivery are beyond that posed by conventional hazards imposed by chemicals in classical delivery matrices. For nanoparticles the knowledge on particle toxicity as obtained in inhalation toxicity shows the way how to investigate the potential hazards of nanoparticles. The toxicology of particulate matter differs from toxicology of substances as the composing chemical(s) may or may not be soluble in biological matrices, thus influencing greatly the potential exposure of various internal organs. This may vary from a rather high local exposure in the lungs and a low or neglectable exposure for other organ systems after inhalation. However, absorbed species may also influence the potential toxicity of the inhaled particles. For nanoparticles the situation is different as their size opens the potential for crossing the various biological barriers within the body. From a positive viewpoint, especially the potential to cross the blood brain barrier may open new ways for drug delivery into the brain. In addition, the nanosize also allows for access into the cell and various cellular compartments including the nucleus. A multitude of substances are currently under investigation for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.  相似文献   

11.
Horticulture is a branch of Agricultural science where it is defined as the science and art of cultivating and handling fruits, vegetables, ornamental plants and several plants having unique medicinal and aromatic values. Horticultural crops provide farmers with high income and have good export quality, but they have a concern about postharvest losses. Hence, increasing productivity and decreasing post-harvest losses by using scientific studies and techniques like biotechnology and nanotechnology could be the simplest possible solution to the above-mentioned problems. Using nanotechnology which is having the characteristics of nanoparticles is proven to be very useful in science and technological applications. Nanotechnology-based formulations increase the product quality and the shelf life of horticultural products and provide multiple ways of inhibiting the growth and development of microorganisms. It is precisely a new edible packaging coverage (film) that controls the exchange of gases and prevents damage from harmful rays such as ultraviolet radiation to a greater extent. Increasing strength by using nano biosensors for labeling products is considered a fundamental process to automated control of storage products. Postharvest rotting of vegetables is recognized to be an oxidative reaction and microbial deterioration as well. This review will address all such nanotechnology-based advancements for minimizing post-harvest losses of horticultural crops and enhancing the socio-economical progress of growers in particular.  相似文献   

12.
The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.  相似文献   

13.
随着纳米技术的发展,纳米颗粒因具有较高的转染效率、良好的靶向性及有效的基因保护作用而被用作基因载体。简要介绍了磁性纳米颗粒、硅纳米颗粒及阳离子多聚物颗粒等的研究进展。  相似文献   

14.
Antimicrobial textile products are developing rapidly as an important part of functional textiles. Silver nanoparticles (AgNPs) are nanotechnology products with antimicrobial properties. However, exposure to nanoparticles in daily life is an important issue for public health, still being updated. Aim was to evaluate the effects of AgNPs on the development of zebrafish embryos focusing on Wnt pathway, proliferation, oxidant–antioxidant status, and apoptosis. The expressions of ccnd1 and gsk3β were determined by RT‐PCR, whereas β‐catenin and proliferative cell antigen (PCNA) expressions were determined immunohistochemically. Lipid peroxidation, superoxide dismutase, and glutathione‐S‐transferase activities were determined spectrophotometrically. Apoptosis was determined using acridine orange staining. Oxidant status, apoptosis, immunohistochemical PCNA, and β catenin staining increased, whereas ccnd1 and antioxidant enzyme activities decreased in AgNPs‐exposed embryos in a dose‐dependent manner. Our results indicate the interaction of possible mechanisms that may be responsible for the toxic effects of AgNPs in zebrafish embryos.  相似文献   

15.
Recent advances in nanotechnology have seen the manufacture of engineered nanoparticles for many commercial and medical applications such as targeted drug delivery and gene therapy. Transport of nanoparticles is mainly attributed to the Brownian force which increases as the nanoparticle decreases to 1 nm. This paper first verifies a Lagrangian Brownian model found in the commercial computational fluid dynamics software Fluent before applying the model to the nasal cavity and the tracheobronchial (TB) airway tree with a focus on drug delivery. The average radial dispersion of the nanoparticles was 9x greater for the user-defined function model over the Fluent in-built model. Deposition in the nasal cavity was high for very small nanoparticles. The particle diameter range in which the deposition drops from 80 to 18% is between 1 and 10 nm. From 10 to 150 nm, however, there is only a small change in the deposition curve from 18 to 15%. A similar deposition curve profile was found for the TB airway.  相似文献   

16.

Background

Recent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK) and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice.

Methodology/Principal Findings

To address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7–8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles.

Conclusions/Significance

We report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy.  相似文献   

17.
Zinc oxide (ZnO) nanoparticles are finding applications in a wide range of products including cosmetics, food packaging, imaging, etc. This increases the likelihood of human exposure to these nanoparticles through dermal, inhalation and oral routes. Presently, the majority of the studies concerning ZnO nanoparticle toxicity have been conducted using in vitro systems which lack the complex cell-cell, cell-matrix interactions and hormonal effects found in the in vivo scenario. The present in vivo study in mice was aimed at investigating the oral toxicity of ZnO nanoparticles. Our results showed a significant accumulation of nanoparticles in the liver leading to cellular injury after sub-acute oral exposure of ZnO nanoparticles (300 mg/kg) for 14 consecutive days. This was evident by the elevated alanine aminotransferase (ALT) and alkaline phosphatase (ALP) serum levels and pathological lesions in the liver. ZnO nanoparticles were also found to induce oxidative stress indicated by an increase in lipid peroxidation. The DNA damage in the liver and kidney cells of mice was evaluated by the Fpg-modified Comet assay which revealed a significant (p<0.05) increase in the Fpg-specific DNA lesions in liver indicating oxidative stress as the cause of DNA damage. The TUNEL assay revealed an induction of apoptosis in the liver of mice exposed to ZnO nanoparticles compared to the control. Our results conclusively demonstrate that sub-acute oral exposure to ZnO nanoparticles in mice leads to an accumulation of nanoparticles in the liver causing oxidative stress mediated DNA damage and apoptosis. These results also suggest the need for a complete risk assessment of any new engineered nanoparticle before its arrival into the consumer market.  相似文献   

18.
Protein-based drugs are the fastest growing class of drugs for the treatment of disease in humans and other animals. However, the current method of producing proteins for pharmaceutical application is predicted to fall short because of population growth and demographic trends. This study characterized human dietary risks using quantitative risk assessment techniques for three pharmaceutical proteins produced in field-grown maize. The three proteins were aprotinin, gastric lipase, and Escherichia coli heat-labile enterotoxin B subunit (LT-B). The human dietary risks from the three proteins inadvertently occurring in food were evaluated using three different exposure scenarios so that potential risks could be compared. The three exposure scenarios ranged in conservatism to evaluate the range of risk between the proteins and scenarios. Risk quotients (RQs) were calculated for all three scenarios to integrate exposure and effect (toxicity). The risk assessments revealed that the most conservative scenario produced higher RQs than the other two scenarios. The dietary risks from scenario 1 for aprotinin were three orders of magnitude greater than for scenario 2, and four orders of magnitude greater than for scenario 3. This risk assessment revealed that dietary risks will vary dramatically and depend on factors such as the specific pharmaceutical protein, protein expression, and exposure scenarios. The assessment also reinforced the need for case-by-case assessments.  相似文献   

19.
Owing to the inevitability of nanoparticles encountering proteins/peptides in current bio‐nano‐medicine development, it is important to know how they interact with each other in vitro before developing in vivo applications. To this end, a model de novo β‐sheet‐forming peptide and typical biocompatible nanoparticles were selected to study thermodynamic aspects of their interactions via a fluorescence quenching method. The results showed that Pep11 and AuNPs spontaneously formed conjugates, mainly driven by a coulombic interaction with a binding affinity of ~ 0.1 µM?1; the physical adsorption process was cooperative. These results deepen our quantitative understanding of nanoparticle–peptide interactions. The results may also be helpful in further nanoparticle–peptide hybrid nanofabrication and also useful for the application of nanoparticles in the treatment of amyloid diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Recent advances in nanotechnology have seen the manufacture of engineered nanoparticles for many commercial and medical applications such as targeted drug delivery and gene therapy. Transport of nanoparticles is mainly attributed to the Brownian force which increases as the nanoparticle decreases to 1 nm. This paper first verifies a Lagrangian Brownian model found in the commercial computational fluid dynamics software Fluent before applying the model to the nasal cavity and the tracheobronchial (TB) airway tree with a focus on drug delivery. The average radial dispersion of the nanoparticles was 9x greater for the user-defined function model over the Fluent in-built model. Deposition in the nasal cavity was high for very small nanoparticles. The particle diameter range in which the deposition drops from 80 to 18% is between 1 and 10 nm. From 10 to 150 nm, however, there is only a small change in the deposition curve from 18 to 15%. A similar deposition curve profile was found for the TB airway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号