首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
There is both a fundamental and applied need to define expectations of changes in aquatic ecosystems due to global changes. It is clear that programs using biological indicators and reference-based comparisons as the foundation for assessments are likely to make increasingly erroneous decisions if the impacts of global change are ignored. Global changes influence all aspects of water resource management decisions based on comparisons to reference conditions with impacts making it increasingly problematic to find an “undisturbed” water body to define acceptable conditions of ecological integrity. Using a more objective scale for characterizing reference conditions that is anchored in expectations for what would be attainable under undisturbed conditions, such as the Biological Condition Gradient (BCG) is one approach that maintains consistent definitions for ecosystem conditions. In addition, protection of reference stations and of unique or undisturbed aquatic resources is imperative, though the scope of protection options is limited. Projections indicate that encroaching land use will affect 36–48% of current reference surface waters by the year 2100. The interpretation of biological indicators is also at risk from global changes. Distinguishing taxonomic attributes based on temperature or hydrologic preferences can be used to enhance the ability to make inferences about global change effects compared to other stressors. Difficulties arise in categorizing unique indicators of global changes, because of similarities in some of the temperature and hydrologic effects resulting from climate change, land use changes, and water removal. In the quest for biological indicators that might be uniquely sensitive to one global stressor as an aid in recognizing probable causes of ecosystem damage, the potential similarities in indicator responses among global and landscape-scale changes needs to be recognized as a limiting factor. Many aspects of global changes are not tractable at the local to regional scales at which water quality regulations are typically managed. Our ability to implement water policies through bioassessment will require a shift in the scale of assessment, planning, and adaptations in order to fulfill our ultimate regulatory goals of preserving good water quality and ecological integrity. Providing clear expectations of effects due to global change for key species and communities in freshwater ecosystems will help water quality programs achieve their goals under changing environmental conditions.  相似文献   

2.
Abstract Diatoms possess a number of attributes which contribute to their suitability as biological indicators. They are highly sensitive to water chemistry changes, abundant in aquatic environments, largely cosmopolitan in distribution, less habitat dependent than macroinverte-brates and have a well-studied taxonomy and ecology. Furthermore, the preservation of diatom valves in lake sediments means that they can provide otherwise unavailable baseline data which can be used to assess and contextualize human impacts on aquatic ecosystems. The value of diatoms as bioindicators in contemporary and palaeolimnological studies has been well established overseas. Despite this, they have been under-utilized in Australia. This paper outlines some of the applications and potential for the use of diatoms as biological indicators in Australia.  相似文献   

3.
Chemical pollution is one of the major threats to global freshwater biodiversity and will be exacerbated through changes in temperature and rainfall patterns, acid–base chemistry, and reduced freshwater availability due to climate change. In this review we show how physico-chemical features of natural fresh waters, including pH, temperature, oxygen, carbon dioxide, divalent cations, anions, carbonate alkalinity, salinity and dissolved organic matter, can affect the environmental risk to aquatic wildlife of pollutant chemicals. We evidence how these features of freshwater physico-chemistry directly and/or indirectly affect the solubility, speciation, bioavailability and uptake of chemicals [including via alterations in the trans-epithelial electric potential (TEP) across the gills or skin] as well as the internal physiology/biochemistry of the organisms, and hence ultimately toxicity. We also show how toxicity can vary with species and ontogeny. We use a new database of global freshwater chemistry (GLORICH) to demonstrate the huge variability (often >1000-fold) for these physico-chemical variables in natural fresh waters, and hence their importance to ecotoxicology. We emphasise that a better understanding of chemical toxicity and more accurate environmental risk assessment requires greater consideration of the natural water physico-chemistry in which the organisms we seek to protect live.  相似文献   

4.
Antimicrobial silver: uses, toxicity and potential for resistance   总被引:1,自引:0,他引:1  
This review gives a comprehensive overview of the widespread use and toxicity of silver compounds in many biological applications. Moreover, the bacterial silver resistance mechanisms and their spread in the environment are discussed. This study shows that it is important to understand in detail how silver and silver nanoparticles exert their toxicity and to understand how bacteria acquire silver resistance. Silver ions have shown to possess strong antimicrobial properties but cause no immediate and serious risk for human health, which led to an extensive use of silver-based products in many applications. However, the risk of silver nanoparticles is not yet clarified and their widespread use could increase silver release in the environment, which can have negative impacts on ecosystems. Moreover, it is shown that silver resistance determinants are widely spread among environmental and clinically relevant bacteria. These resistance determinants are often located on mobile genetic elements, facilitating their spread. Therefore, detailed knowledge of the silver toxicity and resistance mechanisms can improve its applications and lead to a better understanding of the impact on human health and ecosystems.  相似文献   

5.
Forecasting changes in the distributions of macrophytes is essential to understanding how aquatic ecosystems will respond to climate and environmental changes. Previous work in aquatic ecosystems has used climate data at large scales and chemistry data at small scales; the consequence of using these different data types has not been evaluated. This study combines a survey of macrophyte diversity and water chemistry measurements at a large regional scale to demonstrate the feasibility and necessity of including ecological measurements, in addition to climate data, in species distribution models of aquatic macrophytes. A survey of 740 water bodies stratified across 327,000 square kilometers was conducted to document Characeae (green macroalgae) species occurrence and water chemistry data. Chemistry variables and climate data were used separately and in concert to develop species distribution models for ten species across the study area. The impacts of future environmental changes on species distributions were modeled using a range of global climate models (GCMs), representative concentration pathways (RCPs), and pollution scenarios. Models developed with chemistry variables generally gave the most accurate predictions of species distributions when compared with those using climate variables. Calcium and conductivity had the highest total relative contribution to models across all species. Habitat changes were most pronounced in scenarios with increased road salt and deicer influences, with two species predicted to increase in range by >50% and four species predicted to decrease in range by >50%. Species of Characeae have distinct habitat ranges that closely follow spatial patterns of water chemistry. Species distribution models built with climate data alone were insufficient to predict changes in distributions in the study area. The development and implementation of standardized, large‐scale water chemistry databases will aid predictions of habitat changes for aquatic ecosystems.  相似文献   

6.
有毒蓝藻产生的蓝藻毒素对淡水生态系统构成了严重的全球性环境威胁,其中微囊藻毒素(MCs)是所有蓝藻毒素中分布最广、危害最大的一类肝毒素。MCs已对水生态系统的结构、功能和稳定性造成了不良影响,并对人类健康构成威胁。本文综述了当前MCs在水体、沉积物和水生动物体内的分布,以及MCs的生物毒性机制,在此基础上,总结了MCs对水生动物、水生植物及陆生植物的生态毒理效应,及其引发的人类健康风险,并关注了MCs的生物防治方法。最后,针对当前MCs相关研究领域中存在的不足提出展望,旨在为淡水水体中MCs的风险评估与治理管控提供参考。  相似文献   

7.
1. Rapid environmental change occurring in high‐latitude regions has the potential to cause extensive thawing of permafrost. Retrogressive thaw slumps are a particularly spectacular form of permafrost degradation that can significantly impact lake–water chemistry; however, to date, the effects on aquatic biota have received little attention. 2. We used a diatom‐based palaeolimnological approach featuring a paired lake study design to examine the impact of thaw slumping on freshwater ecosystems in the low Arctic of western Canada. We compared biological responses in six lakes affected by permafrost degradation with six undisturbed, reference lakes. 3. Slump‐affected lakes exhibited greater biological change than the paired reference systems, although all systems have undergone ecologically significant changes over the last 200 years. Four of the six reference systems showed an increase in the relative abundance of planktonic algal taxa (diatoms and scaled chrysophytes), the earliest beginning about 1900, consistent with increased temperature trends in this region. 4. The response of sedimentary diatoms to thaw slumping was understandably variable, but primarily related to the intensity of disturbance and associated changes in aquatic habitat. Five of the slump‐affected lakes recorded increases in the abundance and diversity of periphytic diatoms at the presumed time of slump initiation, consistent with increased water clarity and subsequent development of aquatic macrophyte communities. Slump‐affected lakes generally displayed lower nutrient levels; however, in one system, thaw slumping, induced by an intense fire at the site in 1968, ostensibly led to pronounced nutrient enrichment that persists today. 5. Our results demonstrate that retrogressive thaw slumping represents an important stressor to the biological communities of lakes in the western Canadian Arctic and can result in a number of limnological changes. We also show that palaeolimnological methods are effective for inferring the timing and response of aquatic ecosystems to permafrost degradation. These findings provide the first long‐term perspective on the biological response to permafrost thaw, a stressor that will become increasingly important as northern landscapes respond to climate change.  相似文献   

8.
药物和个人护理品(PPCPs)因持续排放到水环境且对水生态环境和人类健康造成潜在威胁而受到广泛关注.藻类作为水体重要的初级生产者,对水体的生态平衡和稳定起着重要的作用.本文围绕地表水PPCPs污染,介绍了不同国家和地区地表水体中PPCPs的浓度分布和污染特征,并从毒性效应、生物累积及潜在的生态风险等方面,综述了PPCPs对藻类的污染生态学研究进展,阐述PPCPs对藻类的毒性效应及机制,PPCPs在藻类中的生物累积,以及地表水体PPCPs的生态风险,为地表水体PPCPs的相关标准制定和修订,以及水体生态环境健康风险评价提供参考.  相似文献   

9.
岩溶区水生生态系统微藻的生物碳泵效应   总被引:2,自引:0,他引:2  
严壮  汪夏雨  李为  余龙江 《微生物学报》2019,59(6):1012-1025
微藻在水生生态系统的碳固定中扮演重要角色。本文综述了岩溶区水生生态系统生物碳泵的提出、岩溶区微藻生物碳泵作用、影响微藻固碳的主要环境因素以及岩溶区微藻固碳的研究进展,并提出了亟待解决的关键科学问题,为深入研究岩溶区水生生态系统微藻固碳能力及生物碳泵机制、科学认识岩溶生态系统的碳汇潜力、丰富和完善岩溶碳循环理论提供参考。  相似文献   

10.
This paper aims to highlight the considerable potential of a better integration of ecological theory in aquatic ecotoxicology. It outlines how community ecology, studies on trophic interaction and disturbance ecology could provide an enhanced theoretical basis for aquatic ecotoxicology and increase ecological relevance in environmental risk assessment of chemicals. Based on the literature and own research, approaches from aquatic ecotoxicology are presented, which are based on ecological considerations and address a higher level of biological complexity for risk assessment strategies of chemicals. The concepts of species-sensitivity distribution (SSD), pollution-induced community tolerance (PICT), the use of model ecosystems and the sediment quality triad (SQT) in ecological risk assesment as well as inputs from ecotoxicology into landscape ecology are illustrated. These examples aim to evidence aquatic ecotoxicology as a rewarding field of ecological research.  相似文献   

11.
As a main source of direct and continuous input of pollutants in the aquatic ecosystem, studying the effects of effluents on receiving ecosystems has a high ecological relevance. While ecological risk assessment procedures are usually based on a chemical-based single component approach, their application for complex mixtures and effluents is less straightforward. A chemical-based approach has to rely on the knowledge of what chemicals are present in effluents, their potential toxicity, how all of these individual chemicals interact and what their individual and combined contribution to the mixture is. Whole effluent toxicity (WET) testing, however, is an integrative tool that measures the toxic effect of an effluent as a whole and accounts for uncharacterized sources of toxicity and for interactions. This paper addresses the use of transplanted bivalves, i.e., caged mussels, as a biomonitoring tool in WET testing with special reference to field situations in both freshwater and marine environments. We indicate how endpoints at different levels of biological organization within exposed mussels can give an integrative overview of effects. Finally, we will provide a framework for future research using mussels and discuss a multitude of instream responses for routine, efficient and cost-effective active biomonitoring applications.  相似文献   

12.
Traditionally, ecological risk assessments (ERAs) have emphasized risks to individual organisms or populations of species. Although habitats may be a potential target for chemical stressors, and are considered in the framework for ERAs, the actual use of habitat evaluation methods in this process is limited. Habitats obviously represent an important entity to protect since damaged aquatic and wildlife habitats may be totally irretrievable over a human life span compared to deleterious biochemical and physiological changes which may be reversible within the life cycle of an organism, if exposure is terminated. Habitat methods have been largely used as management tools to evaluate impacts of planned water and land development projects. Habitat evaluation methods represent a structured, systematic and logical approach to determine changes to habitats because they consider important life requisites and environmental variables limiting to species. Their use in the ERA process will provide a means to differentiate habitat changes resulting from physical, chemical and/or biological factors or a combination of such factors. In addition, minimal and optimum habitat suitability can be determined for different habitat variables under different chemical exposure scenarios. The objectives of this paper are to review several available habitat evaluation methods and discuss their use in risk assessment. Particular emphasis is given to USFWS's Habitat Evaluation Procedures (HEPs) and the Instream Flow Incremental Method (IFIM).  相似文献   

13.
Abstract Biological methods are widely accepted in water quality monitoring programmes worldwide; however, some concern remains over their effectiveness in predicting the effects of contaminants on aquatic ecosystems. While the so-called‘early warning’ approaches, such as bioassays and biomarkers, have been used in Australia to demonstrate mechanisms of toxic action and exposure to contaminants, as elsewhere, little attempt has been made to link observed effects at these lower levels of biological organization to real impacts on aquatic systems. The ecological consequences of exposure to contaminants is undoubtedly best studied at higher levels of biological organization (i. e. at the population or community level). However, monitoring aquatic communities is labour intensive and inadequate for the early detection of impacts. Research is needed to identify links between the bioassessment measures used, so that changes at the lowest biological level (e. g. using biomarkers and bioassays) can be translated into likely‘real’ impacts on the aquatic system, as measured at the population or community level. Monitoring the genetic structure of populations of aquatic organisms, particularly invertebrates, may provide a potential link between subtle effects observed in bioassay tests and subsequent changes in population density and/or community structure. A streamlined approach to monitoring changes at the community level needs to be developed to improve predictive ability and to make this approach more responsive to the early detection and prevention of unacceptable impacts. In addition, research on the use of ecosystem level parameters, such as production/respiration ratios or community metabolism, should be undertaken to determine their suitability for routine biomonitoring of water quality in Australian inland waters.  相似文献   

14.
The terrestrial environment acts as a “sink” for contaminants that have been purposely or accidentally released into the environment. Science and policy that support protective measures for terrestrial ecosystems have run behind those of aquatic toxicology and water quality concerns. As a result ecological risk assessment (ERA) involving terrestrial environments tends to be conducted at a simplistic level, relying on numeric targets (soil quality criteria) as a basis for decision-making. However, soil criteria for ecological receptors are somewhat deficient in terms of the numbers available and the data that supports these numbers. Direct toxicity assessments (DTA) for terrestrial environments, such as those used for water quality evaluations, can provide additional useful information about the toxicity and bioavailability of mixtures of contaminants present in soils. This article outlines the approaches used for assessing the toxicity of soil contaminants in terrestrial environments and critiques their advantages and pitfalls.  相似文献   

15.
Abstract One group of biological tools that are useful for monitoring exposure to xenobiotics (and hence water quality) have been collectively referred to as biomarkers and are denned in this paper as any biochemical, histological and/or physiological alterations or manifestations of stress. Biomarkers within an aquatic toxicological context generally represent biological responses of individual organisms to xenobiotic exposure (i. e. responses at the whole organism level of biological organization). These include among others, enzyme alterations, bile metabolites, RNA/DNA ratio, adenylate energy charge, skeletal abnormalities, immune dysfunction, behavioural changes and histopathological lesions. Biomarkers can act as effective early warning sentinels to ensure the protection of the integrity of whole ecosystems, including freshwater and marine ecosystems. This paper briefly reviews a selection of fish biomarkers of xenobiotic chemical exposure and discusses their respective strengths and limitations for use in biomonitoring. An example of the application of fish mixed-function oxidase (MFO) and cytochrome P-450 as biomarkers of chemical exposure in Port Phillip Bay is provided. It is concluded that judicious application of biomarkers such as MFO in association with an understanding of the underlying causal mechanisms of induction and toxicity, will contribute to the successful prediction of biological effects of xenobiotic exposure on fish population health.  相似文献   

16.
庄文  陈青  周凤霞 《生态学报》2016,36(18):5956-5966
随着纳米技术产业的高速发展,大量工程纳米颗粒物(Engineering nano-particles,ENPs)被排放到自然水环境中,因此对其进行生态毒性及环境风险的研究尤为迫切。综述了ENPs在水环境中的毒理学机理及理想模式生物筛选的研究进展。目前的研究表明ENPs的毒性作用机制主要包括两方面:一是影响细胞信号通路,二是氧化应激造成基因表达的变化。此外,光催化活性、细胞表面附着、溶解特性、表面特征、赋存形态、溶剂效应及与其他环境污染物的协同作用也是可能的毒性作用机理。模式生物的筛选与确定在纳米生态毒理学研究中极为重要。鱼类作为水环境中普遍存在的脊椎动物,群落庞大,其具有行为端点敏感性高、且在生物毒性实验中存在明显的量效关系等特征,被认为是研究ENPs生态毒理学最适合的水生模式生物。研究表明针对在ENPs影响下的未成年鱼类的行为特征研究比传统的胚胎发育及致死率研究更为有效。无脊椎动物和浮游植物同样在各种水环境中普遍存在,对环境污染物极为敏感,且对有害物质具有显著的富集放大效应,因此作为模式生物也具有一定的优势。  相似文献   

17.
Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001–2051) with current patterns of freshwater biodiversity and water quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water quality problems (e.g., the Midwest). Our scenarios reflecting environmentally oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the United States into the future will require attending to the potential threats and opportunities arising from policies and market changes affecting land use.  相似文献   

18.
为掌握中国常见淡水养殖生态系统中神经毒素β-N-甲氨基-L-丙氨酸BMAA的污染水平,文章选取典型淡水养殖池塘的水体、底泥及6种水产品(河蚬、铜锈环棱螺、日本沼虾、中华绒螯蟹、青鱼和鲫)进行BMAA的含量检测,在此基础上开展BMAA对人体的健康风险评估.同时采用L-半胱氨酸修饰后的氧化石墨烯为载体,结合化感物质"没食子...  相似文献   

19.
What is river health?   总被引:32,自引:0,他引:32  
1. Traditionally the assessment of river water quality has been based solely on the measurement of physical, chemical and some biological characteristics. While these measurements may be efficient for regulating effluent discharges and protecting humans, they are not very useful for large-scale management of catchments or for assessing whether river ecosystems are being protected. 2. Measurements of aquatic biota, to identify structural or functional integrity of ecosystems, have recently gained acceptance for river assessment. Empirical evidence from studies of river ecosystems under stress suggests that a small group of biological ecosystem-level indicators can assess river condition. However, physical and chemical features of the environment affect these indicators, the structure and function of which may be changed by human activities. 3. The term ‘river health’, applied to the assessment of river condition, is often seen as being analogous with human health, giving many a sense of understanding. Unfortunately, the meaning of ‘river health’ remains obscure. It is not clear what aspects of river health sets of ecosystem-level indicators actually identify, nor how physical, chemical and biological characteristics may be integrated into measures rather than just observations of cause and effect. 4. Increased examination of relationships between environmental variables that affect aquatic biota, such as habitat structure, flow regime, energy sources, water quality and biotic interactions and biological condition, are required in the study of river health.  相似文献   

20.
The use of ecological models to assess the effects of pesticides on the structure and function of aquatic ecosystems is of growing interest. Of utmost concern is assessment of pesticides that have the potential to biodegrade into metabolites that are as toxic as the parent pesticide. In this work, a mathematical model to predict and evaluate the effect of two pesticides on the population of aquatic biospecies where both pesticides are bio-available in water and sediments with one of the pesticides capable of biodegrading into the other but not vice versa is formulated and analyzed. Conditions for nonlinear stability, instability and Hopf-bifurcation are obtained. The model undergoes a Hopf-bifurcation when the rate of discharge of pesticides crosses a critical value, so that the population of the aquatic species follows an oscillatory pattern. Four hypotheses involving the concentration of the pesticides and the population of the aquatic species where qualitatively investigated: the aquatic species will completely die out with time, the population of the aquatic biospecies will remain under certain conditions, the pesticide will continually remain in water and there will be a periodic variation in the population of the aquatic species over time. Results also indicate that the biodegradation potential of one of the pesticides had significant effect on the population dynamics of the aquatic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号