首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Splenic enlargement (splenomegaly) develops in numerous disease states, although a specific pathogenic role for the spleen has rarely been described. In polycythemia vera (PV), an activating mutation in Janus kinase 2 (JAK2V617) induces splenomegaly and an increase in hematocrit. Splenectomy is sparingly performed in patients with PV, however, due to surgical complications. Thus, the role of the spleen in the pathogenesis of human PV remains unknown. We specifically tested the role of the spleen in the pathogenesis of PV by performing either sham (SH) or splenectomy (SPL) surgeries in a murine model of JAK2V617F-driven PV. Compared to SH-operated mice, which rapidly develop high hematocrits after JAK2V617F transplantation, SPL mice completely fail to develop this phenotype. Disease burden (JAK2V617) is equivalent in the bone marrow of SH and SPL mice, however, and both groups develop fibrosis and osteosclerosis. If SPL is performed after PV is established, hematocrit rapidly declines to normal even though myelofibrosis and osteosclerosis again develop independently in the bone marrow. In contrast, SPL only blunts hematocrit elevation in secondary, erythropoietin-induced polycythemia. We conclude that the spleen is required for an elevated hematocrit in murine, JAK2V617F-driven PV, and propose that this phenotype of PV may require a specific interaction between mutant cells and the spleen.  相似文献   

5.
Janus kinase-2 (JAK2), a signaling molecule mediating effects of various hormones including leptin and growth hormone, has previously been shown to modify the activity of several channels and carriers. Leptin is known to inhibit and growth hormone to stimulate epithelial Na+ transport, effects at least partially involving regulation of the epithelial Na+ channel ENaC. However, no published evidence is available regarding an influence of JAK2 on the activity of the epithelial Na+ channel ENaC. In order to test whether JAK2 participates in the regulation of ENaC, cRNA encoding ENaC was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild type JAK2, gain-of-function V617FJAK2 or inactive K882EJAK2. Moreover, ENaC was expressed with or without the ENaC regulating ubiquitin ligase Nedd4-2 with or without JAK2, V617FJAK2 or K882EJAK2. ENaC was determined from amiloride (50 μM)-sensitive current (I amil) in dual electrode voltage clamp. Moreover, I amil was determined in colonic tissue utilizing Ussing chambers. As a result, the I amil in ENaC-expressing oocytes was significantly decreased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 and Nedd4-2 decreased I amil in ENaC-expressing oocytes to a larger extent than coexpression of Nedd4-2 alone. Exposure of ENaC- and JAK2-expressing oocytes to JAK2 inhibitor AG490 (40 μM) significantly increased I amil. In colonic epithelium, I amil was significantly enhanced by AG490 pretreatment (40 μM, 1 h). In conclusion, JAK2 is a powerful inhibitor of ENaC.  相似文献   

6.

Introduction

An unprovoked thombotic event in a patient is cause for further evaluation of an underlying hypercoaguable state. The investigation should include a thorough search, including checking for a variety of known inherited and acquired hypercoaguble states (protein C or S deficiency, anti-phospholipid antibodies, and anti-thrombin III deficiency) and gene mutations that predispose patients to an increased risk of clotting (for example, prothrombin gene 20210 mutation, factor V Leiden, and the JAK2 V617F mutation).

Case presentation

We report the case of a 38-year-old Caucasian woman with spontaneous, unprovoked abdominal venous thrombosis and demonstrate how testing for the JAK2 V617F mutation was useful in unmasking an underlying hypercoaguable state.

Conclusions

JAK2 V617F-positive myeloproliferative neoplasm was diagnosed. This case illustrates the importance of testing for JAK2 V617F in patients presenting with Budd-Chiari syndrome, even in the absence of overt hematologic abnormalities, in order to establish a diagnosis of underlying myeloproliferative neoplasm.  相似文献   

7.
JAK2 (Janus kinase-2) overactivity contributes to survival of tumor cells and the V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Tumor cell survival depends on availability of glucose. Concentrative cellular glucose uptake is accomplished by Na+ coupled glucose transport through SGLT1 (SLC5A1), which may operate against a chemical glucose gradient and may thus be effective even at low extracellular glucose concentrations. The present study thus explored whether JAK2 activates SGLT1. To this end, SGLT1 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic glucose transport determined by dual electrode voltage clamp experiments. In SGLT1-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of glucose to the extracellular bath generated a current (Ig), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Kinetic analysis revealed that coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. The stimulating effect of JAK2 expression was abrogated by preincubation with the JAK2 inhibitor AG490. Chemiluminescence analysis revealed that JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ig during inhibition of carrier insertion by brefeldin A was similar in the absence and presence of JAK2. Thus, JAK2 fosters insertion rather than inhibiting retrieval of carrier protein into the cell membrane. In conclusion, JAK2 upregulates SGLT1 activity which may play a role in the effect of JAK2 during ischemia and malignancy.  相似文献   

8.
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.  相似文献   

9.
JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation V617FJAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na+ coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, V617FJAK2 or inactive K882EJAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (Ile), which was significantly increased following coexpression of JAK2 or V617FJAK2, but not by coexpression of K882EJAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 μM) resulted in a gradual decline of Ile. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of Ile following inhibition of carrier insertion by brefeldin A (5 μM) was similar in the absence and presence of JAK2 indicating that JAK2 stimulates carrier insertion into rather than inhibiting carrier retrival from the cell membrane. In conclusion, JAK2 up-regulates SLC6A19 activity which may foster amino acid uptake into JAK2 expressing cells.  相似文献   

10.
Janus kinase-2 (JAK2) participates in the signaling of several hormones, growth factors and cytokines. Further stimulators of JAK2 include osmotic cell shrinkage, and the kinase activates the cell volume regulatory Na+/H+ exchanger. The kinase may thus participate in cell volume regulation. Cell shrinkage is known to inhibit K+ channels. Volume-regulatory K+ channels include the voltage-gated K+ channel KCNQ4. The present study explored the effect of JAK2 on KCNQ4 channel activity. KCNQ4 was expressed in Xenopus oocytes with or without wild-type JAK2, constitutively active V617FJAK2 or inactive K882EJAK2; and cell membrane conductance was determined by dual-electrode voltage clamp. Expression of KCNQ4 was followed by the appearance of voltage-gated K+ conductance. Coexpression of JAK2 or of V617FJAK2, but not of K882EJAK2, resulted in a significant decrease in conductance. Treatment of KCNQ4 and JAK2 coexpressing oocytes with the JAK2 inhibitor AG490 (40 μM) was followed by an increase in conductance. Treatment of KCNQ4 expressing oocytes with brefeldin A (5 μM) was followed by a decrease in conductance, which was similar in oocytes expressing KCNQ4 together with JAK2 as in oocytes expressing KCNQ4 alone. Thus, JAK2 apparently does not accelerate channel protein retrieval from the cell membrane. In conclusion, JAK2 downregulates KCNQ4 activity and thus counteracts K+ exit, an effect which may contribute to cell volume regulation.  相似文献   

11.
The report of Janus Kinase 2 (JAK2) mutations in myeloid malignancies with high frequency in myeloproliferative neoplasms has been well known since 2005. By monitoring allele burden, it is found that the expression of JAK2V617F mutation is increasing significantly from essential thrombocytosis to polycythemia vera. Furthermore, JAK2 abnormalities are reported in the majority of unexplained thrombotic episodes. Thalassemic syndromes are characterized by ineffective erythropoiesis and thrombocytosis, mainly due to splenectomy. The high incidence of thromboembolic events has led to the identification of a prothrombotic state in these patients. The contribution of JAK2 mutations to the hypercoagulable state of thalassemic patients is still unknown. Furthermore, the potential role of Janus Kinase mutations in hepcidin expression and consequently in ineffective erythropoiesis is still under investigation. This study was scheduled to determine whether the presence of JAK2V617F mutation in thalassemic patients is associated with thrombocytosis. We studied 20 patients DNA with beta-thalassemia for JAK2V617F mutation by using RG-PCR method. None of the patients were positive for this particular mutation. More studies are needed to prove the role of JAK2 in ineffective erythropoiesis, iron metabolism and thrombocytosis and to determine if using JAK2 inhibitors in thalassemic patients can be a potential therapeutic option.  相似文献   

12.
JAK2 inhibition therapy is used to treat patients suffering from myeloproliferative neoplasms (MPN). Conflicting data on this therapy are reported possibly linked to the types of inhibitors or disease type. Therefore, we decided to compare in mice the effect of a JAK2 inhibitor, Fedratinib, in MPN models of increasing severity: polycythemia vera (PV), post‐PV myelofibrosis (PPMF) and rapid post‐essential thrombocythemia MF (PTMF). The models were generated through JAK2 activation by the JAK2V617F mutation or MPL constant stimulation. JAK2 inhibition induced a correction of splenomegaly, leucocytosis and microcytosis in all three MPN models. However, the effects on fibrosis, osteosclerosis, granulocytosis, erythropoiesis or platelet counts varied according to the disease severity stage. Strikingly, complete blockade of fibrosis and osteosclerosis was observed in the PPMF model, linked to correction of MK hyper/dysplasia, but not in the PTMF model, suggesting that MF development may also become JAK2‐independent. Interestingly, we originally found a decreased in the JAK2V617F allele burden in progenitor cells from the spleen but not in other cell types. Overall, this study shows that JAK2 inhibition has different effects according to disease phenotypes and can (i) normalize platelet counts, (ii) prevent the development of marrow fibrosis/osteosclerosis at an early stage and (iii) reduce splenomegaly through blockage of stem cell mobilization in the spleen.  相似文献   

13.
JAK2 is a cytoplasmic tyrosine kinase that has a vital role in signal transduction from several hemopoietic growth factor receptors. The JAK2 V617F mutation has been implicated in a variety of diseases mainly related to myeloproliferative disorders including polycythemia Vera, essential thrombocythemia, and idiopathic Myelofibrosis but has not been previously described in Thalassemia patients. We studied 36 Lebanese patients diagnosed with thalassemia intermedia and assessed the presence or absence of the JAK2 V617F mutation using JAK2 activating mutation assay (In VivoScribe Technologies) and Polymerase Chain Reaction (PCR). None of the thalassemia intermedia patients were positive for this mutation. To our knowledge, this study is the first to determine the status of JAK2 V617F mutation in thalassemia intermedia patients and expands the international published literature on JAK2. The latter’s V617F mutation does not seem to play a role in this hematologically important clinical entity.  相似文献   

14.
Janus-activated kinase-2 (JAK2) participates in the regulation of the Na+-coupled glucose transporter SGLT1 and the Na+-coupled amino acid transporter SLC6A19. Concentrative cellular creatine uptake is similarly accomplished by Na+-coupled transport. The carrier involved is SLC6A8 (CreaT). The present study thus explored whether JAK2 regulates the activity of SLC6A8. To this end, cRNA encoding SLC6A8 was injected into Xenopus oocytes with or without cRNA encoding wild-type JAK2, constitutively active V617FJAK2 or inactive K882EJAK2. Electrogenic creatine transport was determined in those oocytes by dual-electrode voltage-clamp experiments. In oocytes injected with cRNA encoding SLC6A8 but not in oocytes injected with water or with cRNA encoding JAK2 alone, addition of 1 mM creatine to the extracellular bath generated an inward current (I crea). In SLC6A8 expressing oocytes I crea was significantly decreased by coexpression of JAK2 or V617FJAK2 but not by coexpression of K882EJAK2. According to kinetic analysis, coexpression of JAK2 decreased the maximal transport rate without significantly modifying the affinity of the carrier. In oocytes expressing SLC6A8 and V617FJAK2 I crea was gradually increased by the JAK2 inhibitor AG490 (40 μM). In SLC6A8 and JAK2 coexpressing oocytes the decline of I crea following disruption of carrier insertion with brefeldin A (5 μM) was similar in the absence and presence of JAK2. In conclusion, JAK2 is a novel regulator of the creatine transporter SLC6A8, which downregulates the carrier, presumably by interference with carrier protein insertion into the cell membrane.  相似文献   

15.
Myeloproliferative disorders (MPD) represent a subcategory of hematological malignancies and are characterized by a stem cell-derived clonal proliferation of myeloid cells including erythrocytes, platelets, and leucocytes. Traditionally, the term ‘MPD’ included chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis with myeloid metaplasia (MMM). At present, these four disorders are referred to as ‘classic’ MPD and are distinguished from a spectrum of other MPD-like clinico-pathologic entities that are operationally classified as ‘atypical’ MPD. The oncogenic mutations(s) in classic MPD are unknown except for CML, which is associated with an activating mutation (Bcr/Abl) of the gene encoding for the Abl cytoplasmic protein kinase (PTK). In the last 3 months, a somatic point mutation of JAK2 (JAK2V617F), the gene encoding for another cytoplasmic PTK was reported in the majority of patients with PV and approximately half of those with either ET or MMM. The same mutation was also found in a small number of patients with either atypical MPD or the myelodysplastic syndrome but not in normal controls, germline tissue including T lymphocytes, and patients with secondary erythrocytosis. In vitro, JAK2V617F was associated with constitutive phosphorylation of JAK2 and its downstream effectors as well as induction of erythropoietin hypersensitivity in cell lines. In vivo, murine bone marrow transduced with a retrovirus containing JAK2V617F induced erythrocytosis in the transplanted mice. Taken together, these observations suggest that JAK2V617F is an acquired myeloid lineage-specific mutation that engenders a pathogenetic relevance for the PV phenotype in MPD.  相似文献   

16.
Detection of the JAK2V617F mutation is essential for diagnosing patients with classical myeloproliferative neoplasms (MPNs). However, detection of the low-frequency JAK2V617F mutation is a challenging task due to the necessity of discriminating between true-positive and false-positive results. Here, we have developed a highly sensitive and accurate assay for the detection of JAK2V617F and named it melting curve analysis after T allele enrichment (MelcaTle). MelcaTle comprises three steps: 1) two cycles of JAK2V617F allele enrichment by PCR amplification followed by BsaXI digestion, 2) selective amplification of the JAK2V617F allele in the presence of a bridged nucleic acid (BNA) probe, and 3) a melting curve assay using a BODIPY-FL-labeled oligonucleotide. Using this assay, we successfully detected nearly a single copy of the JAK2V617F allele, without false-positive signals, using 10 ng of genomic DNA standard. Furthermore, MelcaTle showed no positive signals in 90 assays screening healthy individuals for JAK2V617F. When applying MelcaTle to 27 patients who were initially classified as JAK2V617F-positive on the basis of allele-specific PCR analysis and were thus suspected as having MPNs, we found that two of the patients were actually JAK2V617F-negative. A more careful clinical data analysis revealed that these two patients had developed transient erythrocytosis of unknown etiology but not polycythemia vera, a subtype of MPNs. These findings indicate that the newly developed MelcaTle assay should markedly improve the diagnosis of JAK2V617F-positive MPNs.  相似文献   

17.

Background

Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34+ hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters.

Results

By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34+ cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34+ cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-X L and BCLW. In contrast, pro-apoptotic BID and BIM EL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly.

Conclusions

Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.  相似文献   

18.

Background

Non-reactive platelet counts elevation occurs mainly in myeloproliferative disorders (MPDs), which have been reported to be closely associated with JAK2 V617F mutation. Complete blood cell count (CBC) is essential in diagnosis of MPDs, however, the impact of JAK2 V617F mutation on the patients’ hemogram variation remains not clear.

Methods

JAK2 V617F mutation was detected by allele specific real-time quantitative fluorescence PCR (AS-qPCR).

Results

Of the 402 non-reactive platelet elevating patients, JAK2 V617F mutation was detected in 222 (55.2%) patients. RBC counts, WBC counts, platelet-large contrast ratio (P-LCR), platelet distribution width (PDW) and mean platelet volume (MPV) were much higher in JAK2 V617F mutated patients, except platelet counts. In addition, when the patients were classified into subgroups by blood cell counts, it was found that JAK2 V617F mutation rate increased progressively with the increase of RBC counts and WBC counts, other than platelet counts. Furthermore, trilineage hyperplasia group showed highest JAK2 V617F mutation rate (93.26%), followed by the bilineage hyperplasia groups. Lastly, JAK2 V617F mutant allele burden was found much higher in polycythemia vera (PV) patients [median(P25–P75): 45.02%(35.12%–54.22%)] than in essential thrombocythemia (ET) patients [median(P25–P75): 28.23%(17.77%–41.66%)], and that it increased with WBC counts (r = 0.393, p = 0.000) and RBC counts(r = 0.215, p = 0.001), other than platelet counts (r = −0.051, p = 0.452). Further analysis revealed that in ET patients, JAK2 V617F mutant allele burden correlated with WBC counts and platelet counts positively, other than RBC counts, while in PV patients, it correlated with WBC counts and RBC counts positively, but not platelet counts.

Conclusions

JAK2 V617F mutation occurs frequently in patients with non-reactive elevated platelet counts. The presence of JAK2 V617F mutation has great impact on hemogram variation, including RBC counts, WBC counts, platelet parameters and lineage hyperplasia, but not on platelet counts. Besides, JAK2 V617F mutant allele burden affects the blood cell proliferation pattern.  相似文献   

19.
Myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive and negative. The JAK2 V617F is the most common mutation in Philadelphia negative patients and results in a constitutive activation of the JAK/STAT pathway, conferring a proliferative advantage and apoptosis inhibition. Recent studies identified a functional crosstalk between the JAK/STAT and mTOR pathways. The identification of an effective therapy is often difficult, so the availability of new therapeutic approaches might be attractive. Previous studies showed that curcumin, the active principle of the Curcuma longa, can suppress JAK2/STAT pathways in different type of cancer and injuries. In this study, we investigated the anti‐proliferative and pro‐apoptotic effects of curcumin in JAK2 V617F‐mutated cells. HEL cell line and cells from patients JAK2 V617F mutated have been incubated with increasing concentrations of curcumin for different time. Apoptosis and proliferation were evaluated. Subsequently, JAK2/STAT and AKT/mTOR pathways were investigated at both RNA and protein levels. We found that curcumin induces apoptosis and inhibition of proliferation in HEL cells. Furthermore, we showed that curcumin inhibits JAK2/STAT and mTORC1 pathways in JAK2 V617F‐mutated cells. This inhibition suggests that curcumin could represent an alternative strategy to be explored for the treatment of patients with myeloproliferative neoplasms.  相似文献   

20.
Essential thrombocythemia (ET) is an entity of classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by thrombocytosis with megakaryocytic hyperplasia and thrombocytes are increased with abnormal functions. Discovery of the protein tyrosine kinase JAK2 V617F allele contributed to better understanding of the pathogenetic mechanisms of MPNs. Acquired single point mutation in the JAK2 V617F was determined approximately 50–60 % of patients with ET. In this study we aimed to investigate the relationship between JAK2 V617F gene mutation, hematologic, biochemical markers and the complications in the ET patients. A total of 268 patients diagnosed with ET and 219 of those studied for JAK2 gene mutation were followed at the hematology clinics of three major hospitals between 2008 and 2013 were screened retrospectively. Laboratory, clinical and hematologic parameters were compared for JAK2 V617F positive and JAK2 V617F negative patients with ET. 102 (46 %) patients were positive with the JAK2 V617F mutation. The complications were observed in 61 (28 %) patients and 38 (62 %) of them had JAK2 V617F mutation. The levels of white blood cells, neutrophil, basophil, red blood cells, hemoglobin, hematocrit, mean platelet volume, thrombocytes, eosinophil; urea, creatinine were significantly different in patients with the JAK2 V617F mutation (P < 0.05). Presence of the JAK2 V617F mutation supports the diagnosis of ET. It would be useful to investigate the JAK2 V617F mutation and the hematologic and biochemical markers at diagnosis with respect to consider the risk of developing complications and to take the precautions against these complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号