首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Essential thrombocythemia (ET) is an entity of classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by thrombocytosis with megakaryocytic hyperplasia and thrombocytes are increased with abnormal functions. Discovery of the protein tyrosine kinase JAK2 V617F allele contributed to better understanding of the pathogenetic mechanisms of MPNs. Acquired single point mutation in the JAK2 V617F was determined approximately 50–60 % of patients with ET. In this study we aimed to investigate the relationship between JAK2 V617F gene mutation, hematologic, biochemical markers and the complications in the ET patients. A total of 268 patients diagnosed with ET and 219 of those studied for JAK2 gene mutation were followed at the hematology clinics of three major hospitals between 2008 and 2013 were screened retrospectively. Laboratory, clinical and hematologic parameters were compared for JAK2 V617F positive and JAK2 V617F negative patients with ET. 102 (46 %) patients were positive with the JAK2 V617F mutation. The complications were observed in 61 (28 %) patients and 38 (62 %) of them had JAK2 V617F mutation. The levels of white blood cells, neutrophil, basophil, red blood cells, hemoglobin, hematocrit, mean platelet volume, thrombocytes, eosinophil; urea, creatinine were significantly different in patients with the JAK2 V617F mutation (P < 0.05). Presence of the JAK2 V617F mutation supports the diagnosis of ET. It would be useful to investigate the JAK2 V617F mutation and the hematologic and biochemical markers at diagnosis with respect to consider the risk of developing complications and to take the precautions against these complications.  相似文献   

2.
3.
During tumor development, loss of heterozygosity (LOH) often occurs. When LOH is preceded by an oncogene activating mutation, the mutant allele may be further potentiated if the wild-type allele is lost or inactivated. In myeloproliferative neoplasms (MPN) somatic acquisition of JAK2V617F may be followed by LOH resulting in loss of the wild type allele. The occurrence of LOH in MPN and other proliferative diseases may lead to a further potentiating the mutant allele and thereby increasing morbidity. A real time PCR based SNP profiling assay was developed and validated for LOH detection of the JAK2 region (JAK2LOH). Blood of a cohort of 12 JAK2V617F-positive patients (n=6 25-50% and n=6>50% JAK2V617F) and a cohort of 81 patients suspected of MPN was stored with EDTA and subsequently used for validation. To generate germ-line profiles, non-neoplastic formalin-fixed paraffin-embedded tissue from each patient was analyzed. Results of the SNP assay were compared to those of an established Short Tandem Repeat (STR) assay. Both assays revealed JAK2LOH in 1/6 patients with 25-50% JAK2V617F. In patients with >50% JAK2V617F, JAK2LOH was detected in 6/6 by the SNP assay and 5/6 patients by the STR assay. Of the 81 patients suspected of MPN, 18 patients carried JAK2V617F. Both the SNP and STR assay demonstrated the occurrence of JAK2LOH in 5 of them. In the 63 JAK2V617F-negative patients, no JAK2LOH was observed by SNP and STR analyses. The presented SNP assay reliably detects JAK2LOH and is a fast and easy to perform alternative for STR analyses. We therefore anticipate the SNP approach as a proof of principle for the development of LOH SNP-assays for other clinically relevant LOH loci.  相似文献   

4.
In 2005, several groups identified a single gain-of-function point mutation in the JAK2 kinase that was present in the majority of patients with myeloproliferative neoplasms (MPNs). Since this discovery, much effort has been dedicated to understanding the molecular consequences of the JAK2V617F mutation in the haematopoietic system. Three waves of mouse models have been produced recently (bone marrow transplantation, transgenic and targeted knock-in), which have facilitated the understanding of the molecular pathogenesis of JAK2V617F-positive MPNs, providing potential platforms for designing and validating novel therapies in humans. This Commentary briefly summarises the first two types of mouse models and then focuses on the more recently generated knock-in models.  相似文献   

5.
Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs). In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL). CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET) and 5.3% of cases with primary myelofibrosis (PMF). Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR). Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP) expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F.  相似文献   

6.
Mutations in the Janus kinase 2 (JAK2) gene have become an important identifier for the Philadelphia-chromosome negative chronic myeloproliferative neoplasms. In contrast to the JAK2V617F mutation, the large number of JAK2 exon 12 mutations has challenged the development of quantitative assays. We present a highly sensitive real-time quantitative PCR assay for determination of the mutant allele burden of JAK2 exon 12 mutations. In combination with high resolution melting analysis and sequencing the assay identified six patients carrying previously described JAK2 exon 12 mutations and one novel mutation. Two patients were homozygous with a high mutant allele burden, whereas one of the heterozygous patients had a very low mutant allele burden. The allele burden in the peripheral blood resembled that of the bone marrow, except for the patient with low allele burden. Myeloid and lymphoid cell populations were isolated by cell sorting and quantitative PCR revealed similar mutant allele burdens in CD16+ granulocytes and peripheral blood. The mutations were also detected in B-lymphocytes in half of the patients at a low allele burden. In conclusion, our highly sensitive assay provides an important tool for quantitative monitoring of the mutant allele burden and accordingly also for determining the impact of treatment with interferon-α-2, shown to induce molecular remission in JAK2V617F-positive patients, which may be a future treatment option for JAK2 exon 12-positive patients as well.  相似文献   

7.
The JAK2 mutation V617F is detectable in a majority of patients with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Enforced expression of JAK2 V617F in mice induces myeloproliferation and bone marrow (BM) fibrosis, suggesting a causal role for the JAK2 mutant in the pathogenesis of MPNs. However, little is known about mechanisms and effector molecules contributing to JAK2 V617F-induced myeloproliferation and fibrosis. We show that JAK2 V617F promotes expression of oncostatin M (OSM) in neoplastic myeloid cells. Correspondingly, OSM mRNA levels were increased in the BM of patients with MPNs (median 287% of ABL, range 22-1450%) compared to control patients (median 59% of ABL, range 12-264%; P < 0.0001). OSM secreted by JAK2 V617F+ cells stimulated growth of fibroblasts and microvascular endothelial cells and induced the production of angiogenic and profibrogenic cytokines (HGF, VEGF, and SDF-1) in BM fibroblasts. All effects of MPN cell-derived OSM were blocked by a neutralizing anti-OSM antibody, whereas the production of OSM in MPN cells was suppressed by a pharmacologic JAK2 inhibitor or RNAi-mediated knockdown of JAK2. In summary, JAK2 V617F-mediated up-regulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in MPNs, suggesting that OSM might serve as a novel therapeutic target molecule in these neoplasms.  相似文献   

8.
Zou H  Yan D  Mohi G 《FEBS letters》2011,585(7):1007-1013
The JAK2V617F mutation has been identified in most patients with myeloproliferative neoplasms (MPNs), including polycythemia vera, essential thrombocythemia and primary myelofibrosis. Although JAK2V617F is the predominant allele associated with MPNs, other activating Janus kinase 2 (JAK2) alleles (such as K539L, T875N) also have been identified in distinct MPNs. The basis for the differences in the in vivo effects of different JAK2 alleles remains unclear. We have characterized three different classes of disease-associated JAK2 mutants (JAK2V617F, JAK2K539L and JAK2T875N) and found significant differences in biochemical, signaling and transforming properties among these different classes of JAK2 mutants.  相似文献   

9.

Background

Non-reactive platelet counts elevation occurs mainly in myeloproliferative disorders (MPDs), which have been reported to be closely associated with JAK2 V617F mutation. Complete blood cell count (CBC) is essential in diagnosis of MPDs, however, the impact of JAK2 V617F mutation on the patients’ hemogram variation remains not clear.

Methods

JAK2 V617F mutation was detected by allele specific real-time quantitative fluorescence PCR (AS-qPCR).

Results

Of the 402 non-reactive platelet elevating patients, JAK2 V617F mutation was detected in 222 (55.2%) patients. RBC counts, WBC counts, platelet-large contrast ratio (P-LCR), platelet distribution width (PDW) and mean platelet volume (MPV) were much higher in JAK2 V617F mutated patients, except platelet counts. In addition, when the patients were classified into subgroups by blood cell counts, it was found that JAK2 V617F mutation rate increased progressively with the increase of RBC counts and WBC counts, other than platelet counts. Furthermore, trilineage hyperplasia group showed highest JAK2 V617F mutation rate (93.26%), followed by the bilineage hyperplasia groups. Lastly, JAK2 V617F mutant allele burden was found much higher in polycythemia vera (PV) patients [median(P25–P75): 45.02%(35.12%–54.22%)] than in essential thrombocythemia (ET) patients [median(P25–P75): 28.23%(17.77%–41.66%)], and that it increased with WBC counts (r = 0.393, p = 0.000) and RBC counts(r = 0.215, p = 0.001), other than platelet counts (r = −0.051, p = 0.452). Further analysis revealed that in ET patients, JAK2 V617F mutant allele burden correlated with WBC counts and platelet counts positively, other than RBC counts, while in PV patients, it correlated with WBC counts and RBC counts positively, but not platelet counts.

Conclusions

JAK2 V617F mutation occurs frequently in patients with non-reactive elevated platelet counts. The presence of JAK2 V617F mutation has great impact on hemogram variation, including RBC counts, WBC counts, platelet parameters and lineage hyperplasia, but not on platelet counts. Besides, JAK2 V617F mutant allele burden affects the blood cell proliferation pattern.  相似文献   

10.
The constitutively activated mutation (V617F) of tyrosine kinase Janus kinase 2 (JAK2) is found in the majority of patients with myeloproliferative neoplasms (MPNs). The development of a novel chemical compound to suppress JAK2 V617F mutant-induced onset of MPNs and clarification of the signaling cascade downstream of JAK2 V617F mutant will provide clues to treat MPNs. Here we found that a water-soluble pyrrolidinium fullerene derivative, C(60)-bis (N, N-dimethylpyrrolidinium iodide), markedly induced apoptosis of JAK2 V617F mutant-induced transformed cells through a novel mechanism, inhibiting c-Jun N-terminal kinase (JNK) activation pathway but not generation of reactive oxygen species (ROS). Pyrrolidinium fullerene derivative significantly reduced the protein expression level of apoptosis signal-regulating kinase 1 (ASK1), one of the mitogen-activated protein kinase kinase kinases (MAPKKK), resulting in the inhibition of upstream molecules of JNK, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7). Strikingly, the knockdown of ASK1 enhanced the sensitivity to pyrrolidinium fullerene derivative-induced apoptosis, and the treatment with a JNK inhibitor, SP600125, also induced apoptosis of the transformed cells by JAK2 V617F mutant. Furthermore, administration of both SP600125 and pyrrolidinium fullerene derivative markedly inhibited JAK2 V617F mutant-induced tumorigenesis in nude mice. Taking these findings together, JAK2 V617F mutant-induced JNK signaling pathway is an attractive target for MPN therapy, and pyrrolidinium fullerene derivative is now considered a candidate potent drug for MPNs.  相似文献   

11.
12.
Recently, an acquired somatic point mutation (p.V617F) in a highly conserved residue of the pseudokinase domain of the JAK2 tyrosine kinase was shown to be associated with myeloproliferative disorders. Because of the clinical importance of this mutation in diagnosing myeloproliferative disorders and its relevance for disease progression, we have developed a tetra-primer polymerase chain reaction (PCR) assay to detect JAK2 p.V617F. Titration studies showed that the assay could reliably detect one copy of the mutant allele in a mix of 50 wild-type alleles suggesting that the lower detection limit of this assay is estimated to be 2%. This study demonstrates that genotyping and quantifying of the JAK2 V617F mutation can be performed by tetra-primer PCR using both freshly isolated and formalin-fixed tissues. Our tetra-primer PCR assay is sensitive, low-cost, and easy to use method for the detection of JAK2 p.V617F, which could be used even in low-tech laboratories.  相似文献   

13.
The acquired mutation (V617F) of Janus kinase 2 (JAK2) is observed in the majority of patients with myeloproliferative neoplasms (MPNs). In the screening of genes whose expression was induced by JAK2 (V617F), we found the significant induction of c-Myc mRNA expression mediated by STAT5 activation. Interestingly, GSK-3β was inactivated in transformed Ba/F3 cells by JAK2 (V617F), and this enhanced the protein expression of c-Myc. The enforced expression of c-Myc accelerated cell proliferation but failed to inhibit apoptotic cell death caused by growth factor deprivation; however, the inhibition of GSK-3β completely inhibited the apoptosis of cells expressing c-Myc. Strikingly, c-Myc T58A mutant exhibited higher proliferative activity in a growth-factor-independent manner; however, this mutant failed to induce apoptosis. In addition, knockdown of c-Myc significantly inhibited the proliferation of transformed cells by JAK2 (V617F), suggesting that c-Myc plays an important role in oncogenic activity of JAK2 (V617F). Furthermore, JAK2 (V617F) induced the expression of a target gene of c-Myc, ornithine decarboxylase (ODC), known as the rate-limiting enzyme in polyamine biosynthesis. An ODC inhibitor, difluoromethylornithine (DFMO), prevented the proliferation of transformed cells by JAK2 (V617F). Importantly, administration of DFMO effectively delayed tumor formation in nude mice inoculated with transformed cells by JAK2 (V617F), resulting in prolonged survival; therefore, ODC expression through c-Myc is a critical step for JAK2 (V617F)-induced transformation and DFMO could be used as effective therapy for MPNs.  相似文献   

14.
ObjectiveLNK is an adapter protein negatively regulating the JAK/STAT cell signaling pathway. In this study, we observed the correlation between variation in LNK gene and the clinical type of myeloproliferative neoplasms (MPN).MethodsA total of 285 MPN cases were recruited, including essential thrombocythemia (ET) 154 cases, polycythemia vera (PV) 76 cases, primary myelofibrosis (PMF) 19 cases, and chronic myeloid leukemia (CML) 36 cases. Ninety-three healthy individuals were used as normal controls. V617F mutation in JAK2 was identified by allele-specific PCR method, RT-PCR was used for the detection of BCR/ABL1 fusion gene, and mutations and variations in coding exons and their flanking sequences of LNK gene were examined by PCR-sequencing.ResultsMissense mutations of A300V, V402M, and R415H in LNK were found in 8 patients including ET (4 cases, all combined with JAK2-V617F mutation), PV (2 cases, one combined with JAK2-V617F mutation), PMF (one case, combined with JAK2-V617F mutation) and CML (one case, combined with BCR/ABL1 fusion gene). The genotype and allele frequencies of the three SNPs (rs3184504, rs111340708 and rs78894077) in LNK were significantly different between MPN patients and controls. For rs3184504 (T/C, in exon2), the T allele (p.262W) and TT genotype were frequently seen in ET, PV and PMF (P<0.01), and C allele (p.262R) and CC genotype were frequently seen in CML (P<0.01). For rs78894077 (T/C, in exon1), the T allele (p.242S) was frequently found in ET (P<0.05). For rs111340708 (TGGGGx5/TGGGGx4, in intron 5), the TGGGG x4 allele was infrequently found in ET, PMF and CML(P<0.01).ConclusionMutations in LNK could be found in some of MPN patients in the presence or absence of JAK2-V617F mutation. Several polymorphisms in LNK gene may affect the clinical type or the genetic predisposition of MPN.  相似文献   

15.
Most cases of BCR-ABL1-negative myeloproliferative neoplasms (MPNs), essential thrombocythemia, polycythemia vera and primary myelofibrosis are associated with JAK2 V617F mutations. The outcomes of these cases are critically influenced by the transition from JAK2 V617F heterozygosity to homozygosity. Therefore, a technique providing an unbiased assessment of the critical allele burden, 50% JAK2 V617F, is highly desirable. In this study, we present an approach to assess the JAK2 V617F burden from genomic DNA (gDNA) and complementary DNA (cDNA) using one-plus-one template references for allele-specific quantitative-real-time-PCR (qPCR). Plasmidic gDNA and cDNA constructs encompassing one PCR template for JAK2 V617F spaced from one template for JAK2Wild Type were constructed by multiple fusion PCR amplifications. Repeated assessments of the 50% JAK2V617F burden within the dynamic range of serial dilutions of gDNA and cDNA constructs resulted in 52.53±4.2% and 51.46±4.21%, respectively. The mutation-positive cutoff was estimated to be 3.65% (mean +2 standard deviation) using 20 samples from a healthy population. This qPCR approach was compared with the qualitative ARMS-PCR technique and with two standard methods based on qPCR, and highly significant correlations were obtained in all cases. qPCR assays were performed on paired gDNA/cDNA samples from 20 MPN patients, and the JAK2 V617F expression showed a significant correlation with the allele burden. Our data demonstrate that the qPCR method using one-plus-one template references provides an improved assessment of the clinically relevant transition of JAK2 V617F from heterozygosity to homozygosity.  相似文献   

16.
目的:研究JAK2V617F点突变与骨髓增殖性疾病(myeloproliferative disease,MPD)的临床相关性,为MPD的基因学诊断及靶向治疗提供理论依据。方法:应用等位基因特异性聚合酶链反应(AS-PCR)检测JAK2V617F点突变。结果:102例的MPD患者中包括慢性粒细胞白血病(CML)患者9例、真性红细胞增多症(PV)患者21例、原发性血小板增多症(ET)患者37例、特发性骨髓纤维化(IMF)患者16例和分类不明的骨髓增殖性疾病(uMPD)患者19例,JAK2V617F突变阳性率依次为11%、71.4%、51.4%、75.0%、78.9%。结论:JAK2V617F点突变有助于不同类型MPD的诊断,在MPD疾病的诊断中起重要作用。  相似文献   

17.

Purpose

The influence of JAK2 V617F mutation on blast transformation (BT) and overall survival (OS) in primary myelofibrosis (PMF) is controversial. In a large cohort of patients we applied competing risks analysis for studying the influence of JAK2V617F mutation on BT in PMF.

Patients and Methods

In 462 PMF–fibrotic type patients (bone marrow [BM] fibrosis grade >0) we computed the incidence of BT and death in the framework of Cox regression analysis and of Fine and Gray competing risks analysis for BT.

Results

At the Cox regression analysis, having either a wild-type (wt) or a homozygous JAK2V617F genotype were factors for BT (HR, 1.98 and 2.04, respectively, with respect to the heterozygous genotype), but not for OS. At the competing risks regression analysis, the risk for BT in wt and homozygous V617F patients increased with respect to Cox analysis, giving a sHR of 2.17 and 2.12, respectively. Correcting the results for the variables that could have influence on BT, JAK2V617F wt and homozygous genotypes remained independently associated with BT. In a validation cohort of 133 independent cases with PMF-prefibrotic type (BM fibrosis grade  = 0), the BT predictive model including JAK2V617F genotype and older age retained high discriminant capacity (C statistics, 0.70; 95% CI, 0.47 to 0.92).

Conclusion

The accumulation of mutated alleles in the JAK2V617F clone or the selective acquisition of a proliferative advantage in the wt clone are two relevant routes to BT in PMF. The influence of these results on treatment decisions with anti-JAK2 agents should be tested.  相似文献   

18.

Background

Myeloproliferative disorders are characterized by clonal expansion of normal mature blood cells. Acquired mutations giving rise to constitutive activation of the JAK2 tyrosine kinase has been shown to be present in the majority of patients. Since the demonstration that the V617F mutation in the exon 14 of the JAK2 gene is present in about 90% of patients with Polycythemia Vera (PV), the detection of this mutation has become a key tool for the diagnosis of these patients. More recently, additional mutations in the exon 12 of the JAK2 gene have been described in 5 to 10% of the patients with erythrocytosis. According to the updated WHO criteria the presence of these mutations should be looked for in PV patients with no JAK2 V617F mutation. Reliable and accurate methods dedicated to the detection of these highly variable mutations are therefore necessary.

Methods/Findings

For these reasons we have defined the conditions of a High Resolution DNA Melting curve analysis (HRM) method able to detect JAK2 exon 12 mutations. After having validated that the method was able to detect mutated patients, we have verified that it gave reproducible results in repeated experiments, on DNA extracted from either total blood or purified granulocytes. This HRM assay was further validated using 8 samples bearing different mutant sequences in 4 different laboratories, on 3 different instruments.

Conclusion

The assay we have developed is thus a valid method, adapted to routine detection of JAK2 exon 12 mutations with highly reproducible results.  相似文献   

19.
Wu Z  Yuan H  Zhang X  Liu W  Xu J  Zhang W  Guan M 《PloS one》2011,6(10):e26534

Background

JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described.

Methodology/Principal Findings

Asymmetric PCR for detection of JAK2 V617F with a 3′-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments.

Conclusions

With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号