首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tim S. Stuart 《Planta》1968,83(2):185-206
Summary The leaves of the epiphytic fern Polypodium polypodioides, which lives on the branches of trees, are very similar to those of most higher plants except for the presence of scales on the dorsal side of the leaves. The structure of the cells of the chloroplasts and the mitochondria is the same as that of other higher plants. The only obvious difference found was that the contents of the central vacuole solidified when dehydrated. P. polypodioides was not damaged by loss of 97% of its normal water content and photosynthetic activity was found to be proportional to water content between 20 and 100% water content. When a dried leaf was immersed in liquid water, almost all of the original photosynthetic activity reappeared in the first 30 min of rehydration, provided incisions had been made into the leaf before drying.The rate of water uptake by intact (uncut) leaves was strongly inhibited by anaerobic conditions. This inhibition could be relieved by cutting the leaves, by supplying oxygen, or by removing the scales.Since in P. polypodioides the photosynthetic apparatus is not damaged by severe dehydration its quick revival does not depend on a special repair mechanism. Therefore, P. polypodioides should be a suitable object for a number of studies on the mechanism of photosynthesis.These studies were aided by grant No. AF-AFOSR-662-65 from the Air Force Office of Scientific Research to Dr. Hans Gaffron.  相似文献   

2.
Background and Aims The advantage of clonal integration (resource sharing between connected ramets of clonal plants) varies and a higher degree of integration is expected in more stressful and/or more heterogeneous habitats. Clonal facultative epiphytes occur in both forest canopies (epiphytic habitats) and forest understories (terrestrial habitats). Because environmental conditions, especially water and nutrients, are more stressful and heterogeneous in the canopy than in the understorey, this study hypothesizes that clonal integration is more important for facultative epiphytes in epiphytic habitats than in terrestrial habitats.Methods In a field experiment, an examination was made of the effects of rhizome connection (connected vs. disconnected, i.e. with vs. without clonal integration) on survival and growth of single ramets, both young and old, of the facultative epiphytic rhizomatous fern Selliguea griffithiana (Polypodiaceae) in both epiphytic and terrestrial habitats. In another field experiment, the effects of rhizome connection on performance of ramets were tested in small (10 × 10 cm2) and large (20 × 20 cm2) plots in both epiphytic and terrestrial habitats.Key Results Rhizome disconnection significantly decreased survival and growth of S. griffithiana in both experiments. The effects of rhizome disconnection on survival of single ramets and on ramet number and growth in plots were greater in epiphytic habitats than in terrestrial habitats.Conclusions Clonal integration contributes greatly to performance of facultative epiphytic ferns, and the effects were more important in forest canopies than in forest understories. The results therefore support the hypothesis that natural selection favours genotypes with a higher degree of integration in more stressful and heterogeneous environments.  相似文献   

3.
The epiphytic habitat represents a highly dynamic environment, and water deficit is one of the common factors that affects growth and development of epiphytes. Gametophytes of the epiphytic fern, Pyrrosia piloselloides (L.) Price, were able to tolerate up to 50 days of drought. Upon rehydration, cells that recovered from water stress were capable of forming new gametophytes. The ability of gametophytes to recover from desiccation plays an important role in the survival and growth of the fern species under natural conditions. Received: 20 May 1998 / Revision received: 5 August 1998 / Accepted: 21 August 1998  相似文献   

4.
The chlorophyllous spores of Equisetum survive desiccation, yet cannot tolerate this quiescent state for more than ~2 wk. The hypothesis that spore viability of Equisetum hyemale L. is limited by inhibition of photosynthetic recovery was tested using chlorophyll a fluorescence and oxygen-exchange analyses. Experimental spores were desiccated at 2% relative humidity and 25C for time periods of 24 h, 1 wk, and 2 wk, and then rehydrated at 200 mmol photons/m2s (PAR) and 25C for up to 24 h. Spores desiccated for 24 h recovered photosynthetic competence very rapidly during rehydration, reaching the O2 compensation point in 6.3 ~ 0.3 (mean +/- SE) min. Recovery of photosynthetic performance of spores desiccated for 1 wk was slower, as judged by significantly slower increases of (1) photochemical efficiency of photosystem (PS) II, (2) PS II quinoneB-reducing center concentration, (3) quinoneB concentration, (4) water-oxidation activity, (5) rate of light-induced O2 evolution, and (6) apparent quantum yield of net O2 exchange. Photosystem-II and whole-spore photosynthetic competence of 2-wk desiccated spores was increasingly impaired, and did not recover during rehydration. Origin fluorescence yield and dark respiration were not affected by desiccation time following rehydration. The results suggest that the extremely short viability of disseminated spores of Equisetum hyemale is due to the inability to recover losses of water oxidation and photosystem II-core function following 2 wk of desiccation.  相似文献   

5.
Cells of Anabaena sp. PCC 7120, a low desiccation tolerant cyanobacterium, was subjected to prolonged desiccation and effect of loss of water was examined on production of osmolytes, and antioxidant response as well as on overall viability in terms of photosynthetic activity. During dehydration (22 h), the organism maintained about 98.5 % loss of cellular water, yet cells remained viable as about 30 % of photosynthetic O2-evolution activity resumed upon hydrating (1 h) such cells. In desiccated state, cyanobacterial cells accumulated osmolytes within 1 h though their contents decreased thereafter. The highest levels of trehalose (179 nmol mg−1 protein), sucrose (805 nmol mg−1 protein) and proline (23.2 nmol mg−1 protein) were attained within 1 h. Chlorophyll a and carotenoid contents also increased within 1 h but phycocyanin level showed opposite trend. The oxygen-evolving activity declined in desiccated cyanobacterial biomass while rehydration led to instant recovery, indicating that cells protect the photosynthetic machinery against desiccation. Notwithstanding, activities of antioxidant enzymes (catalase, peroxidase and superoxide dismutase) attained their peaks after 3 h of desiccation, though within 10 min of rehydration, their levels returned back close to basal activities of the cultured cells. We propose that onset of osmolyte production in conjunction with upshift of antioxidant enzymes apparently protects the cyanobacterial cells from desiccation stress.  相似文献   

6.
As the dominant cyanobacterial species in biological soil crusts (BSCs), Microcoleus vaginatus often suffer from many stress conditions, such as desiccation and high temperature. In this study, the activities of light‐harvesting complexes (LHCs) and reaction centers of photosystem II (PS II) in crust cyanobacteria M. vaginatus were monitored under high temperature and desiccation conditions using chlorophyll fluorescence technology. The results showed that all the fluorescence signals were significantly inhibited by high temperature or desiccation treatments. Under high temperature conditions, it was further demonstrated that PS II reaction centers were first destructed within the first hour, then the LHCs gradually dissociated and free phycocyanin formed within 1–5 h, and the activities of all the light harvesting and reaction center pigment proteins were fully suppressed after 24 h of high temperature treatment. Furthermore, the high temperature treated M. vaginatus lost its ability to recover photosynthetic activity. On the contrary, although desiccation also led to the loss of photosynthetic activity in M. vaginatus, after rehydration in the light the fluorescence parameters including Fo, Fv and Fv/Fm could be well recovered within 12 h. It was concluded that desiccation could provide crust cyanobacteria M. vaginatus some protection from other stresses, such as high temperature demonstrated in this experiment. The combine of temperature change and precipitation pattern in the field provide a guarantee for the alternate metabolism and inactivity in crust cyanobacteria. That may be a very important strategy for the survival of crust cyanobacteria in high temperature regions.  相似文献   

7.

Background and Aims

Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 µmol m−2 s−1. However, desiccation at irradiance of 350 µmol m−2 s−1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here was to establish the causes and mechanisms of irreversible damage of the photosynthetic apparatus due to dehydration at high irradiance, and to elucidate the mechanisms determining recovery.

Methods

Changes in chloroplast structure, CO2 assimilation, chlorophyll fluorescence parameters, fluorescence imaging and the polypeptide patterns during desiccation of Haberlea under medium (100 µmol m−2 s−1; ML) irradiance were compared with those under low (30 µmol m−2 s−1; LL) irradiance.

Key Results

Well-watered plants (control) at 100 µmol m−2 s−1 were not damaged. Plants desiccated at LL or ML had similar rates of water loss. Dehydration at ML decreased the quantum efficiency of photosystem II photochemistry, and particularly the CO2 assimilation rate, more rapidly than at LL. Dehydration induced accumulation of stress proteins in leaves under both LL and ML. Photosynthetic activity and polypeptide composition were completely restored in LL plants after 1 week of rehydration, but changes persisted under ML conditions. Electron microscopy of structural changes in the chloroplast showed that the thylakoid lumen is filled with an electron-dense substance (dense luminal substance, DLS), while the thylakoid membranes are lightly stained. Upon dehydration and rehydration the DLS thinned and disappeared, the time course largely depending on the illumination: whereas DLS persisted during desiccation and started to disappear during late recovery under LL, it disappeared from the onset of dehydration and later was completely lost under ML.

Conclusions

Accumulation of DLS (possibly phenolics) in the thylakoid lumen is demonstrated and is proposed as a mechanism protecting the thylakoid membranes of H. rhodopensis during desiccation and recovery under LL. Disappearance of DLS during desiccation in ML could leave the thylakoid membranes without protection, allowing oxidative damage during dehydration and the initial rehydration, thus preventing recovery of photosynthesis.Key words: Haberlea rhodopensis, resurrection plant, electron microscopy, blue–green fluorescence, chlorophyll fluorescence  相似文献   

8.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

9.
Global change puts an increasing pressure on tropical forests and their inherent diversity by the risk of longer droughts and drier microclimatic conditions within the forest. How organisms will respond is uncertain, especially for organisms highly depending on their microclimatic environment such as bryophytes. An adequate tolerance to desiccation is important to face these changes, however, little is known for tropical bryophytes. We investigated for the first time the desiccation tolerance of epiphytic bryophytes from contrasting microsites at the tropical lowland forest in French Guiana. Using chlorophyll‐fluorescence (Fv/Fm) as an indicator of recovery, we tested: (1) desiccation tolerance for short (3 d) and long (9 d) desiccation events; (2) different desiccation intensities; and (3) recovery by rehydration with water vapor. Species from the canopy were well adapted to desiccation events. Thirteen of 18 species maintained more than 75 percent of their photosynthetic capacity after recovery at the strongest desiccation treatment of 9 d at 43 percent relative humidity (RH). In contrast, species from the understory were sensitive and withstood desiccation only at humid conditions of 75 percent RH and higher. The photosystem of the studied bryophytes was reactivated efficiently in equilibration with water vapor only—a yet neglected phenomenon in bryology. A novel introduced desiccation tolerance index allows global comparison of desiccation tolerances and highlights the sensitivity of understory species. Our results suggest that decreasing humidity caused by climate change and forest degradation could be a concerning threat for understory species.  相似文献   

10.
Three moss species [ Tortula ruraliformis (Besch.) Grout. Bryum pseudotriquetrum (Hedw.) Schaegr and Dicranella palustris (Dicks.) Crund. ex. E. F. Warb. ( D. squarrosa (Starke) Schp.] collected from a range of habitats differing in water availability were desiccated in controlled conditions. All species became photosynthetically inactive when dried below a water content of 100–200% dry weight. Only Tortula ruraliformis , a moss from arid sand dunes. was able to recover fully to pre-desiccated rates of photosynthetic electron transport during subsequent rehydration. The rate of recovery was influenced by irradiance during desiccation. Mosses from hydric habitats showed some resumption of photosynthetic electron transport (following rehydration) if dried in the dark. but did not do so if dried even in low light. In these circumstances the mosses showed evidence of lasting photoinhibition of photosynthesis after rehydration. The desiccation-tolerant T. ruraliformis became significantly photoinhibited only when continually exposed to high irradiance (1200 μmol m−2 s−1) in the hydrated state. If allowed to desiccate whilst exposed to high irradiance this species showed less evidence of photoinhibition after rehydration, and was not at all affected by desiccation in low irradiance. Photon flux absorption in dry moss was 50–60% less than that in hydrated moss as a result of leaf curling. However, the reduction in absorption of photosynthetically active radiation cannot account for the total loss of photosynthetic oxygen evolution and variable chlorophyll fluorescence observed in the desiccated mosses.  相似文献   

11.
The interactions among water content, chlorophyll a fluorescence emission, xanthophyll interconversions and net photosynthesis were analyzed during dehydration in desiccation-tolerant Frullania dilatata (L.) Dum. and desiccation-intolerant Pellia endiviifolia (Dicks) Dum. Water loss led to a progressive suppression of photosynthetic carbon assimilation in both species. Their chlorophyll fluorescence characteristics at low water content were: low photosynthetic quantum conversion efficiency, high excitation pressure on photosystem II and strong non-photochemical quenching. However, dissipation activity was lower in P. endiviifolia and was not accompanied by a rise in the concentration of de-epoxidised xanthophylls as F. dilatata. The photosynthetic apparatus of F. dilatata remained fully and speedily recuperable after desiccation in as indicated by the restoration of chlorophyll fluorescence parameters to pre-desiccation values upon rehydration. A lack of recovery upon remoistening of P. endiviifolia indicated permanent and irreversible damage to photosystem II. The results suggest that F. dilatata possesses a desiccation-induced zeaxanthin-mediated photoprotective mechanism which might aid photosynthesis recovery when favourable conditions are restored by alleviating photoinhibitory damage during desiccation. This avoidance mechanism might have evolved as an adaptative response to repeated cycles of desiccation and rehydration that represent a real threat to photosynthetic viability. Received: 12 January 1998 / Accepted: 14 July 1998  相似文献   

12.
13.
The effect of high irradiance (HI) during desiccation and subsequent rehydration of the homoiochlorophyllous desiccation-tolerant shade plant Haberlea rhodopensis was investigated. Plants were irradiated with a high quantum fluence rate (HI; 350 μmol m−2 s−1 compared to ca. 30 μmol m−2 s−1 at the natural rock habitat below trees) and subjected either to fast desiccation (tufts dehydrated with naturally occurring thin soil layers) or slow desiccation (tufts planted in pots in peat-soil dehydrated by withholding irrigation). Leaf water content was 5 % of the control after 4 d of fast and 19 d of slow desiccation. Haberlea was very sensitive to HI under all conditions. After 19 d at HI, even in well-watered plants there was a strong reduction of rates of net photosynthesis and transpiration, contents of chlorophyll (Chl) and carotenoids, as well as photosystem 2 activity (detected by the Chl fluorescence ratio RFd). Simultaneously, the blue/red and green/red fluorescence ratios increased considerably suggesting increased synthesis of polyphenolic compounds. Desiccation of plants in HI induced irreversible changes in the photosynthetic apparatus and leaves did not recover after rehydration regardless of fast or slow desiccation. Only young leaves survived desiccation.  相似文献   

14.
Summary Selaginella lepidophylla, the resurrection plant, curls dramatically during desiccation and the hypothesis that curling may help limit bright light-induced damage during desiccation and rehydration was tested under laboratory conditions. Restraint of curling during desiccation at 25° C and a constant irradiance of 2000 mol m–2 s]t-1 significantly decreased PSII and whole-chain electron transport and the Fv/Fm fluorescence yield ratio following rehydration relative to unrestrained plants. Normal curling during desiccation at 37.5°C and 200 mol m–2 s–1 irradiance did not fully protect against photoinhibition or chlorophyll photooxidation indicating that some light-induced damage occurred early in the desiccation process before substantial curling. Photosystem I electron transport was less inhibited by high-temperature, high-irradiance desiccation than either PSII or whole-chain electron transport and PSI was not significantly affected by restraint of curling during desiccation at 25°C and high irradiance. Previous curling also helped prevent photoinhibition of PSII electron transport and loss of whole-plant photosynthetic capacity as the plants uncurled during rehydration at high light. These results demonstrate that high-temperature desiccation exacerbated photoinhibition, PSI was less photoinhibited than PSII or whole-chain electron transport, and stem curling ameliorated bright light-induced damage helping to make rapid recovery of photosynthetic competence possible when the plants are next wetted.  相似文献   

15.
16.
The resurrection plant, Haberlea rhodopensis can survive nearly total desiccation only in its usual low irradiation environment. However, populations with similar capacity to recover were discovered recently in several sunny habitats. To reveal what kind of morphological, structural and thylakoid-level alterations play a role in the acclimation of this low-light adapted species to high-light environment and how do they contribute to the desiccation tolerance mechanisms, the structure of the photosynthetic apparatus, the most sensitive component of the chlorophyll-retaining resurrection plants, was analyzed by transmission electron microscopy, steady state low-temperature fluorescence and two-dimensional Blue-Native/SDS PAGE under desiccation and rehydration.  相似文献   

17.
The desiccation-tolerant plants of the R. serbica and R. nathaliae are resurrection plants which are able to fully recover their physiological function after anabiosis. A comparison of chlorophyll fluorescence imaging and photosynthetic pigment contents responses of R. serbica and, for the first time, R. nathaliae to dehydration and rehydration were investigated. For this purpose, plants after collection from their natural habitats were kept fully watered for 14 days at natural condition. The experiment was conducted with mature leaves of both species. R. serbica and R. nathaliae plants were dehydrated to 5.88 % and 7.87 % relative water content (RWC) by withholding water for 15 days, afterwards the plants were rehydrated for 72 hours to 94.67 % and 97.02 % RWC. During desiccation, R. serbica plants preserved the chlorophyll content about 84 %, while R. nathaliae about 90 %. During dehydration when RWC were more than 40 %, photochemical efficiency of PSII for photochemistry, the Fv/Fm ratio, decreased about 40 % in R. nathaliae plants, but a strong reduction with 60 % was recorded for R. serbica. Following rehydration, the Fv/Fm ratio recovered more rapidly in R. nathaliae. The higher photosynthetic rates could also be detected via imaging the chlorophyll fluorescence decrease ratio Rfd, which possessed higher values after rehydration leaves of R. nathaliae as compared to R. serbica. The results showed that the photosynthetic activity and chlorophyll contents after rehydration are recovered more rapidly in R. nathaliae in comparison to R. serbica.  相似文献   

18.
Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.  相似文献   

19.
Ferns have radiated into the same diverse environments as spermatophytes, and have done so with an independent gametophyte that is not protected by the parent plant. The degree and extent of desiccation tolerance (DT) in the gametophytes of tropical fern species was assessed to understand mechanisms that have allowed ferns to radiate into a diversity of habitats. Species from several functional groups were subjected to a series of desiccation events, including varying degrees of intensity and multiple desiccation cycles. Measurements of chlorophyll fluorescence were used to assess recovery ability and compared with species ecology and gametophyte morphology. It is shown that vegetative DT (rare in vascular plants) is widely exhibited in fern gametophytes and the degree of tolerance is linked to species habitat preference. It is proposed that gametophyte morphology influences water-holding capacity, a novel mechanism that may help to explain how ferns have radiated into drought-prone habitats. Fern gametophytes have often been portrayed as extreme mesophytes with little tolerance for desiccation. The discovery of DT in gametophytes holds potential for improving our understanding of both the controls on fern species distribution and their evolution. It also advances a new system with which to study the evolution of DT in vascular plants.  相似文献   

20.
Resynthesis of the photosynthetic apparatus and resumption of CO2 assimilation upon rehydration is reported for the monocotyledonous and poikilochlorophyllous desiccation-tolerant (PDT) plant Xerophyta scabrida (Pax) Th. Dur. et Schinz (Velloziaceae). During desiccation there was a complete breakdown of chlorophylls whereas the total carotenoid content of air-dried leaves was reduced to about 22% of that of functional leaves. The prerequisites for the resynthesis of photosynthetic pigments and functional thylakoids were the reappearance of turgor and maximum leaf water content at 2 and 10 h after rehydration, respectively. The period of increased initial respiration after rewetting leaves (rehydration respiration) lasted up to 30 h and was thus 6 to 10 times longer than in homoiochlorophyllous desiccation-tolerant plants (HDTs) in which chlorophylls are retained during desiccation. Accumulation of chlorophylls a + b and total carotenoids (xanthophylls and carotene) started 10 h after rehydration. Normal levels of chlorophyll and carotenoids were obtained 72 h after rehydration. Values for the variable-fluorescence decrease ratio (Rfd690 values), an indicator of photochemical activity, showed that photochemical function started 10 h after rehydration, but normal values of 2.7 were reached only 72 h after rehydration. Net CO2 assimilation started 24 h after rewetting and normal rates were reached after 72 h, at the same time as normal values of stomatal conductance were obtained. The increasing rates of net CO2 assimilation were paralleled by decreasing values of the intercellular CO2 concentration. All photosynthetic parameters investigated showed values normal for functional chloroplasts by 72 h after the onset of rehydration. Fully regreened leaves of the presumed C3 plant X. scabrida exhibited a net CO2 assimilation rate which was in the same range as that of other C3 plants and higher than that of recovered HDT plants. The fundamental difference between air-dried PDT plants, such as X. scabrida, which have to resynthesize the photosynthetic pigment apparatus, and air-dried HDT plants, which only undergo a functional recovery, is discussed.Abbreviations c -carotene - ci intercellular CO2 concentration - Car x + c total carotenoid content x + c - Chl a + b total chlorophyll a + b content - gs stomatal conductance - HDT homoiochlorophyllous desiccation tolerant - LWC leaf-water content - PN net photosynthesis rate - PDT poikilochloro phyllous desiccation tolerant - Rd dark respiration - Rfd variable fluorescence decrease ratio (Rfd = fd/fs) - x xanthophylls The senior author thanks the Deutschem Akademischem Auslandsdienst (Bonn, Germany), Soros Foundation (Budapest, Hungary) and European Community (Brussels, Belgium) for providing fellowships for research periods at Karlsruhe. The research was also supported by the Hungarian Scientific Research Foundation (OTKA I/848, OTKA I/3.1545 and OTKA I/4.F.5359). We wish to thank Professor T. Pocs (Eger, Hungary — Morogoro, Tanzania) for collecting the plant material and to the linguist Mr. A. Jackson for correcting the English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号