首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of vegetative desiccation tolerance in land plants   总被引:16,自引:0,他引:16  
Oliver  Melvin J.  Tuba  Zoltán  Mishler  Brent D. 《Plant Ecology》2000,151(1):85-100
Vegetative desiccation tolerance is a widespread but uncommon occurrence in the plant kingdom generally. The majority of vegetative desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 60 to 70 species of ferns and fern allies, and approximately 60 species of angiosperms that exhibit some degree of vegetative desiccation tolerance. In this report we analyze the evidence for the differing mechanisms of desiccation tolerance in different plants, including differences in cellular protection and cellular repair, and couple this evidence with a phylogenetic framework to generate a working hypothesis as to the evolution of desiccation tolerance in land plants. We hypothesize that the initial evolution of vegetative desiccation tolerance was a crucial step in the colonization of the land by primitive plants from an origin in fresh water. The primitive mechanism of tolerance probably involved constitutive cellular protection coupled with active cellular repair, similar to that described for modern-day desiccation-tolerant bryophytes. As plant species evolved, vegetative desiccation tolerance was lost as increased growth rates, structural and morphological complexity, and mechanisms that conserve water within the plant and maintain efficient carbon fixation were selected for. Genes that had evolved for cellular protection and repair were, in all likelihood, recruited for different but related processes such as response to water stress and the desiccation tolerance of reproductive propagules. We thus hypothesize that the mechanism of desiccation tolerance exhibited in seeds, a developmentally induced cellular protection system, evolved from the primitive form of vegetative desiccation tolerance. Once established in seeds, this system became available for induction in vegetative tissues by environmental cues related to drying. The more recent, modified vegetative desiccation tolerance mechanism in angiosperms evolved from that programmed into seed development as species spread into very arid environments. Most recently, certain desiccation-tolerant monocots evolved the strategy of poikilochlorophylly to survive and compete in marginal habitats with variability in water availability.  相似文献   

2.
蕨类植物的化感作用及其对生物多样性的影响   总被引:11,自引:0,他引:11  
植物化感作用是植物通过向环境中释放化学物质从而对同种植株和繁殖体或与其他植物之间产生的直接或间接、有益或有害的作用,它影响植物分布、群落形成与演化、作物间作等,与生物多样性保护以及农林和园艺生产实践关系密切,在国际上受到越来越多的关注。但国内这方面的研究起步相对较晚,研究范围有限,对蕨类植物化感作用的报道更少。本文系统介绍了蕨类植物化感作用的研究进展,包括蕨类植物种内的化感作用(即自毒效应)、常见的蕨类植物种间的化感作用(即孢子体对配子体的化感作用和配子体对配子体的化感作用)及蕨类植物对种子植物的化感作用(蕨类植物可通过化感作用与种子植物争夺更多的资源和生长空间)。还介绍了种子植物对蕨类植物的化感作用(主要表现为抑制作用)以及蕨类植物化感作用与动物侵食、微生物侵染的关系,研究发现昆虫侵食能增强或减弱蕨类植物的化感作用,微生物的活动可能增强某些蕨类植物的化感作用。本文从上述不同角度说明蕨类植物化感作用对生物多样性的影响,希望有助于促进我国学者对该领域的深入研究。  相似文献   

3.
为探讨蕨类配子体泌粉现象的系统学意义,对5种粉背蕨属(Aleuritopteris)植物的配子体发育过程进行了观察。结果表明,毛叶粉背蕨(A.squamosa)的配子体(通常是雌配子体)也具有泌粉现象,而其他4种的配子体不具粉状分泌物。基于叶绿体rbc L序列的证据表明,毛叶粉背蕨与粉背蕨属其他植物、中国蕨属(Sinopteris)等构成一个具有强烈支持率的单系,即Hemionitids支,该支与美洲分布的隐囊蕨类互为姐妹群。因此,配子体泌粉现象在碎米蕨类中并非隐囊蕨类植物所特有,泌粉现象的产生,在系统发育上至少涉及2次独立的演化事件。毛叶粉背蕨的泌粉现象多发生在雌性配子体上,暗示配子体的泌粉可能与配子体的雌性分化和胚发生发育相关。  相似文献   

4.
Factors that influence the distribution of ferns are poorly understood and likely reflect the ecology of both the sporophyte and the gametophyte generation. Little study has been done on the ecology of the gametophyte generation, especially in regard to tropical species. The goal of this study was to examine demography and the influence of light and disturbance on the distribution of the gametophytes of several tropical epiphytic, hemiepiphytic, and terrestrial fern species. Through a series of observational and experimental studies, we found that increased terrestrial gametophyte density and richness were related to both increased light and disturbance. By contrast, increased light had no influence, and increased disturbance negatively affected epiphytic density. Over a 25-mo demographic study, epiphytic and hemiepiphytic species had significantly greater longevities and lower recruitment rates than terrestrial species. Such unique strategies may have evolved in response to different disturbance regimens between the two habitats. Terrestrial species encounter and are adapted to more frequent disturbance and have invested in rapid gametophyte growth and recruitment. Epiphytic species may be more influenced by bryophyte competition, and in habitats of relatively low disturbance, they have invested in greater size and longevities. In such systems, gametophytes are able to survive for years waiting for favorable recruitment conditions.  相似文献   

5.
Summary To investigate life history adaptations to cold climates, the leaf development, sporulation period, growing stage of gametophytes, and the frost and drought resistance of sporophytes and gametophytes of 67 fern species native to Kokkaido were studied. Most ferns common in Hokkaido are summer-green with leaves developing during late May to June and decaying during October. Most of the ferns in Hokkaido sporulate during August to early September. Spores dispersed from June to September germinate before winter begins, forming vegetative prothallia. Gametophytes mature only in the following summer. Thus in Hokkaido the gametophytes as well as perennial sporophytes are exposed to severe winter conditions. In order to correlate the life cycles of temperate ferns with winter cold stress, frost resistance of gametophytes, rhizomes, and leaves of sporophytes were determined. Maximal frost resistance of rhizomes reflects the stress conditions of their habitats: rhizomes of forest understory ferns are damaged at-5°to -17.5°C, epiphytic ferns and ferns of habitats exposed to severe frost sustained temperatures of -20° to-40°C. The leaves of winter-green and evergreen ferns resist frost ranging from -25° to -40°C. The leaves of summer-green ferns are killed by late frost below -5°C. With some exceptions, gametophytes of ferns growing on the forest floor resist frost to -40°C and are much hardier than sporophytes. These results suggest the possible restrictive effects of cold climate on the life span of leaves as well as on the sporulation period. If winter cold is one of the decisive factors for seasonality expression and habitat distribution of ferns, the sensitive generation must be the sporophyte rather than the gametophyte. The hardier gametophyte is therefore able to colonize habitats in which the sporophyte is excluded by frost if mechanisms of vegetative propagation are evolved.Contribution No. 2451 from The Institute of Low Temperature Science  相似文献   

6.
Fern gametophytes have often been neglected in research; however, studies on gametophytes are crucial for a better understanding of the evolution of ferns. During their life cycle, some gametophytes produce large and long‐lived populations without producing sporophytes and reproduce independently through asexual means, such as through the formation of gemmae. In this study, we investigated independent gametophytes on the Jeju Island of Korea, which was located on the land bridge between East China and Japan during the glacial periods. Fourteen gametophyte populations were collected from seven sites, of which 13 populations were clearly identified as belonging to four fern species known to occur in Jeju Island with BLAST searches using rbcL and trnL‐F sequences. Surprisingly, the last remaining population constituted undescribed taxa in Korea. We presented the first report of the independent gametophytes of Antrophyum obovatum Baker which has not been previously recorded in Korea. It has been supposed that many ferns sought suitable habitat throughout the land bridge between China and Japan. However, Jeju Island might be unsuitable for vittarioid ferns that prefer a tropical or subtropical environment. Consequently, only two species of vittariod ferns (A. obovatum and Haplopteris flexuosa (Fée) E.H. Crane) in the form of a gametophyte and sporophyte, respectively, exist on Jeju Island. Therefore, this gametophyte population must be protected and managed from a conservation perspective. In the case of the independent gametophyte of Hymenophyllum wrightii Bosch, haplotype analysis was conducted based on the rbcL sequences and the result supported that the North American populations were migrated from Japan through land bridge during the glacial periods and Jeju populations were recently established by long‐distance dispersal of the Japanese populations.  相似文献   

7.

Background and Aims

The gametophytes of most homosporous ferns are cordate–thalloid in shape. Some are strap- or ribbon-shaped and have been assumed to have evolved from terrestrial cordate shapes as an adaptation to epiphytic habitats. The aim of the present study was to clarify the morphological evolution of the strap-shaped gametophyte of microsoroids (Polypodiaceae) by precise analysis of their development.

Methods

Spores of Colysis decurrens collected in Kagoshima, Japan, were cultured and observed microscopically. Epi-illuminated micrographs of growing gametophytes were captured every 24 h, allowing analysis of the cell lineage of meristems. Light microscopy of resin-sections and scanning electron microscopy were also used.

Key Results

Contrary to previous assumptions that strap-shaped Colysis gametophytes have no organized meristem, three different types of meristems are formed during development: (1) apical-cell based – responsible for early growth; (2) marginal – further growth, including gametophyte branching; and (3) multicellular – formation of cushions with archegonia. The cushion is two or three layers thick and intermittent. The apical-cell and multicellular meristems are similar to those of cordate gametophytes of other ferns, but the marginal meristem is unique to the strap-shaped gametophyte of this fern.

Conclusions

The strap-shaped gametophytes of C. decurrens may have evolved from ancestors with a cordate shape by insertion of the marginal meristem phase between the first apical-cell-based meristem and subsequent multicellular meristem phases. Repeated retrieval of the marginal meristem at the multicellular meristem phase would result in indefinite prolongation of gametophyte growth, an ecological adaptation to epiphytic habitats.  相似文献   

8.
光照对蕨类植物配子体假根向重力性的影响   总被引:3,自引:0,他引:3  
对8种蕨类植物配子体假根向重力性反应的研究结果表明,除卷柏Selaginella tamariscina Spring配子体假根无向重力性反应并且其生长方向与光照方向无关外,其它7种的配子体假根均有向重力性反应,并且假根的向重力性反应在配子体发育初期,因光照的方向不同而异,表现为负向光性。随着配子体发育至片状体阶段,光对其向重力性反应的影响逐渐减弱,而重力的影响增强。在蕨类植物配子体发育初期,光对  相似文献   

9.
Although consensus has now been reached on a general two-locus DNA barcode for land plants, the selected combination of markers (rbcL + matK) is not applicable for ferns at the moment. Yet especially for ferns, DNA barcoding is potentially of great value since fern gametophytes--while playing an essential role in fern colonization and reproduction--generally lack the morphological complexity for morphology-based identification and have therefore been underappreciated in ecological studies. We evaluated the potential of a combination of rbcL with a noncoding plastid marker, trnL-F, to obtain DNA-identifications for fern species. A regional approach was adopted, by creating a reference database of trusted rbcL and trnL-F sequences for the wild-occurring homosporous ferns of NW-Europe. A combination of parsimony analyses and distance-based analyses was performed to evaluate the discriminatory power of the two-region barcode. DNA was successfully extracted from 86 tiny fern gametophytes and was used as a test case for the performance of DNA-based identification. Primer universality proved high for both markers. Based on the combined rbcL + trnL-F dataset, all genera as well as all species with non-equal chloroplast genomes formed their own well supported monophyletic clade, indicating a high discriminatory power. Interspecific distances were larger than intraspecific distances for all tested taxa. Identification tests on gametophytes showed a comparable result. All test samples could be identified to genus level, species identification was well possible unless they belonged to a pair of Dryopteris species with completely identical chloroplast genomes. Our results suggest a high potential of the combined use of rbcL and trnL-F as a two-locus cpDNA barcode for identification of fern species. A regional approach may be preferred for ecological tests. We here offer such a ready-to-use barcoding approach for ferns, which opens the way for answering a whole range of questions previously unaddressed in fern gametophyte ecology.  相似文献   

10.

Background and Aims

The gametophyte phase of ferns plays an important role in habitat selection, dispersal, adaptation and evolution. However, ecological studies on fern gametophytes have been impeded due to the difficulty of species identification of free-living gametophytes. DNA barcoding provides an alternative approach to identifying fern gametophytes but is rarely applied to field studies. In this study, an example of field vittarioid gametophyte identification using DNA barcoding, which has not been done before, is given.

Methods

A combination of distance-based and tree-based approaches was performed to evaluate the discriminating power of three candidate barcodes (matK, rbcL and trnL-F) on 16 vittarioid sporophytes. Sequences of the trnL-F region were generated from 15 fern gametophyte populations by tissue-direct PCR and were compared against the sporophyte dataset, using BLAST.

Key Results trnL-F

earns highest primer universality and discriminatory ability scores, whereas PCR success rates were very low for matK and rbcL regions (10·8 % and 41·3 %, respectively). BLAST analyses showed that all the sampled field gametophytes could be successfully identified to species level. Three gametophyte populations were also discovered to be living beyond the known occurrence of their sporophyte counterparts.

Conclusions

This study demonstrates that DNA barcoding (i.e. reference databasing, tissue-direct PCR and molecular analysis), especially the trnL-F region, is an efficient tool to identify field gametophytes, and has considerable potential in exploring the ecology of fern gametophytes.  相似文献   

11.
The sporophyte of the fern Pteris vittata is known to hyperaccumulate arsenic (As) in its fronds to >1% of its dry weight. Hyperaccumulation of As by plants has been identified as a valuable trait for the development of a practical phytoremediation processes for removal of this potentially toxic trace element from the environment. However, because the sporophyte of P. vittata is a slow growing perennial plant, with a large genome and no developed genetics tools, it is not ideal for investigations into the basic mechanisms underlying As hyperaccumulation in plants. However, like other homosporous ferns, P. vittata produces and releases abundant haploid spores from the parent sporophyte plant which upon germination develop as free-living, autotrophic haploid gametophyte consisting of a small (<1 mm) single-layered sheet of cells. Its small size, rapid growth rate, ease of culture, and haploid genome make the gametophyte a potentially ideal system for the application of both forward and reverse genetics for the study of As hyperaccumulation. Here we report that gametophytes of P. vittata hyperaccumulate As in a similar manner to that previously observed in the sporophyte. Gametophytes are able to grow normally in medium containing 20 mm arsenate and accumulate >2.5% of their dry weight as As. This contrasts with gametophytes of the related nonaccumulating fern Ceratopteris richardii, which die at even low (0.1 mm) As concentrations. Interestingly, gametophytes of the related As accumulator Pityrogramma calomelanos appear to tolerate and accumulate As to intermediate levels compared to P. vittata and C. richardii. Analysis of gametophyte populations from 40 different P. vittata sporophyte plants collected at different sites in Florida also revealed the existence of natural variability in As tolerance but not accumulation. Such observations should open the door to the application of new and powerful genetic tools for the dissection of the molecular mechanisms involved in As hyperaccumulation in P. vittata using gametophytes as an easily manipulated model system.  相似文献   

12.
银粉背蕨是一种小型观赏蕨类植物,但目前我国对该蕨的研究还不够成熟。本文利用改良Knop's培养基和腐殖土培养银粉背蕨的孢子,观察其配子体及幼孢子体形态发育特征,并研究了其配子体发育的最适培养基pH值。研究结果显示:(1)银粉背蕨孢子黄褐色,具三裂缝,极面观三角圆形,赤道面观为近半圆形,孢子具网状纹饰;孢子萌发为书带蕨型;原叶体发育为水蕨型;颈卵器和精子器为薄囊蕨型;成熟原叶体为对称的心脏形,不具毛状体;上述特征为银粉背蕨孢子和配子体发育的稳定特征。(2)培养基pH值在7.0~9.0时随着碱性的增强,银粉背蕨孢子萌发和配子体生长发育速度逐渐增加。(3)利用腐殖土培养银粉背蕨孢子,7~8周可发育成幼叶,成苗率达90%,成苗健壮,根系发达,是扩繁银粉背蕨的适宜方式。本文为资源植物银粉背蕨人工繁殖和演化研究提供科学依据。  相似文献   

13.
Ferns represent the basal group of vascular plants and are known to have fungal interactions with arbuscular mycorrhizal fungi, but diversity of endophytic fungi from ferns is rarely studied. Moreover, fungal diversity associated with ferns is likely underestimated as most studies have been performed based on a microscopic or culture-dependent approach. In this study, we investigated the endophytic fungal diversity within roots and sporophore of an endangered Korean fern (Mankyua chejuense), and compared it to fungi in surrounding soil using a metabarcoding approach. A high diversity of endophytic fungi (236 OTUs), mostly belonging to Ascomycota, was detected and fungal richness and composition were significantly different between habitats. Indicator species analysis showed that endophytic fungi have similar ecological characteristics to fungal species found from other land plants. Our results suggest that various fungal species are associated with ferns, thus understanding fern-associated fungal diversity can have a great implication for fern biology and conservation.  相似文献   

14.
At an early stage of growth gametophytes support the sporophytes of ferns. Young sporophytes become independent of gametophytes when the first leaves develop. Although large fern gametophytes produce multiple archegonia simultaneously, only one sporophyte is typically established on one gametophyte. The number of sporophytes is believed to be controlled in two possible directions, from gametophyte to sporophyte or from preceding sporophyte to another sporophyte. To investigate the effects of gametophytes on their sporophytes, we studied the relationship between organic matter production by gametophytes and the growth of young sporophytes of Thelypteris palustris. We cut gametophytes in half (CGs) to reduce the gametophytes’ production of matter. There was no significant difference between the growth of sporophytes on intact gametophytes (IGs) and that on CGs. According to our estimates, based on the rate of organic matter production, the large gametophyte was able to produce two or more sporophytes. The resources required for CGs to make similar-sized sporophytes was twice that for IGs. In polyembryony each of the multiple sporophytes was similar in size to the single sporophytes. Resource limitation does not seem to explain why fern gametophytes establish single sporophytes.  相似文献   

15.
Abstract Mating systems of 18 species of homosporous ferns follow a bimodal distribution, similar to that observed for seed plants (Schemske and Lande, 1985). Most species are highly outcrossing, a few are inbreeding, and two species examined to date have mixed mating systems. Equisetum arvense and several species of lycopods are also highly outcrossing. Several mechanisms, including inbreeding depression, antheridiogen, and ontogenetic sequences that result in effectively unisexual gametophytes, promote outcrossing in homosporous ferns and perhaps other homosporous pteridophytes as well. In some species of homosporous ferns, selection has favored the evolution of inbreeding as an adaptation for colonization. High levels of intra- and interpopulational gene flow via spore dispersal, coupled with high levels of intergametophytic crossing, generally lead to genetically homogeneous populations and species of homosporous ferns. However, rock-dwelling ferns and ferns from xeric habitats may exhibit significant population genetic structure due to physically patchy habitats. Reticulate evolution in homosporous ferns may be enhanced by high levels of intergametophytic crossing.  相似文献   

16.
As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de‐hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho‐physiological trade‐off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT.  相似文献   

17.
The discovery,scope, and puzzle of desiccation tolerance in plants   总被引:7,自引:0,他引:7  
Alpert  Peter 《Plant Ecology》2000,151(1):5-17

The modern scientific study of desiccation tolerance began in 1702 when Anthony von Leeuwenhoek discovered that rotifers could survive without water for months. By 1860, the controversy over whether organisms could dry up without dying had reached such a pitch that a special French commission was convened to adjudicate the dispute. In 2000, we know that a few groups of animals and a wide variety of plants can tolerate desiccation in the active, adult stages of their life cycles. Among plants, this includes many lichens and bryophytes, a few ferns, and a very few flowering plants, but no gymnosperms nor trees. Some desiccation-tolerant species can survive without water for over ten years, recover from desiccation to unmeasurably low water potentials, and, when plants are desiccated, endure temperature extremes from ?272 to 100 °C. Desiccation-tolerant plants occur on all continents but mainly in xeric habitats or microhabitats where the cover of desiccation-sensitive species is low. Two main puzzles arise from these patterns: What are the mechanisms by which plants tolerate desiccation? and Why are desiccation-tolerant plants not more ecologically widespread? Recent molecular and biochemical studies suggest that there are multiple mechanisms of tolerance, many of which involve protection from oxidants and from the loss of configuration of macromolecules during dehydration. Hypotheses to explain the restricted ecological range of desiccation-tolerance plants include inability to maintain a cumulative positive carbon balance during repeated cycles of wetting and drying and inherent trade offs between desiccation tolerance and growth rate.

  相似文献   

18.
张开梅  沈羽  刘颖  方炎明 《广西植物》2016,36(4):419-424
蕨类植物配子体为单倍体,结构简单,独立于孢子体生活,在研究其对环境的响应以及揭示其机理上都具有独特的优势。该研究从我国和国际两个分支出发,梳理了近年来全球范围内相关的文献资料,透视了蕨类配子体的发育和生理生态前沿科学和研究动态。在发育部分以研究进展为主要内容,国内研究以传统植物蕨类植物的配子体形态和发育的观察为主,而国外学者更关注于新技术和新方法在传统学科中的运用,如X光透射技术和流式细胞术。生理生态部分分为光合与呼吸作用、土壤逆境的响应、气候变化的响应以及对化感物质的响应4个板块。在光合作用的研究中,发现蕨类配子体会在光强的变化下产生自我保护机制,碳水化合物和脂质是配子体能量代谢中的重要指标。在土壤逆境的响应研究中,对砷有超富集作用的蜈蚣草配子体和耐高盐的铁角蕨配子体是配子体研究中较为突出的材料。荷兰地区广泛存在的耳蕨属蕨类,哥斯达黎加热带雨林的20种蕨类植物及水生蕨类槐叶萍,成为了证明配子体成活率和温度之间重要关系的实验例证。在化感作用研究中,主要通过紫茎泽兰根、茎和叶水提液对扇蕨等4种蕨类配子体的作用,证明了入侵植物对于蕨类植物配子体生长发育具有危害作用。在美国佛罗里达的一类爬树蕨也发现了同样的入侵植物现象。此外,还对几个新兴技术在配子体研究的前景进行了展望,并对已有技术进行了描述。该研究以多个角度介绍了国内外配子体的研究进展,希望有助于促进我国学者对该领域的深入研究。  相似文献   

19.
Jones VA  Dolan L 《Annals of botany》2012,110(2):205-212

Background

Almost all land plants develop tip-growing filamentous cells at the interface between the plant and substrate (the soil). Root hairs form on the surface of roots of sporophytes (the multicellular diploid phase of the life cycle) in vascular plants. Rhizoids develop on the free-living gametophytes of vascular and non-vascular plants and on both gametophytes and sporophytes of the extinct rhyniophytes. Extant lycophytes (clubmosses and quillworts) and monilophytes (ferns and horsetails) develop both free-living gametophytes and free-living sporophytes. These gametophytes and sporophytes grow in close contact with the soil and develop rhizoids and root hairs, respectively.

Scope

Here we review the development and function of rhizoids and root hairs in extant groups of land plants. Root hairs are important for the uptake of nutrients with limited mobility in the soil such as phosphate. Rhizoids have a variety of functions including water transport and adhesion to surfaces in some mosses and liverworts.

Conclusions

A similar gene regulatory network controls the development of rhizoids in moss gametophytes and root hairs on the roots of vascular plant sporophytes. It is likely that this gene regulatory network first operated in the gametophyte of the earliest land plants. We propose that later it functioned in sporophytes as the diploid phase evolved a free-living habit and developed an interface with the soil. This transference of gene function from gametophyte to sporophyte could provide a mechanism that, at least in part, explains the increase in morphological diversity of sporophytes that occurred during the radiation of land plants in the Devonian Period.  相似文献   

20.
To test our hypothesis of hybrid formation involving the ‘independent gametophyte’ phenomenon in ferns, we identified the genomic formulae and ploidy level of gametophytes of the Vandenboschia radicans complex at the periphery of a sporophyte population. We identified haploid gametophytes of V. kalamocarpa (one of the two putative parents of V.×stenosiphon) in a hybrid sporophyte population in Japan that lacks fertile non‐hybrid individuals. Furthermore, diploid sporophytes of the species were not found within a 50‐km radius. This finding supports a hypothesis of hybridization involving the ‘independent gametophyte’ phenomenon and provides a new perspective on the geographical distribution of fern hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号