首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper maps nine genes coding for zein subunits on maize chromosome 4. Six of them (Zp6h, Zp10, Zp14, Zp15, Zp22) encode for subunits with a molecular weight of 22 Kd (kilodaltons), while three (Zp27, Zp28, Zp30) code 20-kd subunits. The six 22-kd related genes are not contiguous but are scattered on both chromosome arms, whereas Zp27, Zp28, and Zp30 are more tightly linked in the chromosome short arm in a segment 5 crossover units long. The organization of zein genes on chromosome 4 shows a close analogy with that of zein loci on chromosome 7. This suggests that both maize chromosomes evolved by duplication of short segments.  相似文献   

2.
Zein is the major storage protein of the endosperm of maize kernels. When this alcohol-soluble protein is subjected to SDS polyacrylamide gel electrophoresis, it is resolved into four fractions of different molecular weight: 10, 14, 20 and 22 kilodaltons (kd). Each fraction is heterogeneous with respect to isoelectric pH. For example, the 20 kd fraction contains at least seven subfractions as revealed by isoelectric focusing in polyacrylamide gels. In this report, we present evidence that the structural genes coding for the 20 kd proteins are clustered on the short arm of chromosome 7, a region that also bears loci regulating endosperm zein biosynthesis [opaque-2 (02) and defective endosperm-B30 (De*-B30)]. The organization of these zein genes suggests that the evolution of at least some of the maize genome has occurred as the result of repeated duplication and divergence of chromosome segments.  相似文献   

3.
DNA sequences homologous to single-copy genes were labelled with biotinylated dUTP or digoxygenin-labelled dUTP and hybridized to chromosome spreads. The hybridization signals were visualized with fluorescent avidin- or antibody-conjugates. This method allowed the detection of DNA targets on metaphase chromosomes as small as 1.4 kb. The hybridization signals were identified as fluorescent spots on both sister chromatids. Using an 18S rDNA probe as marker to identify chromosomes II and III it was possible to assign single-copy genes to these chromosomes. In the line V30 the endogenous chalcone synthase gene (chsA) was mapped at the distal end of the short arm of chromosome 5. The cDNA probe for this single-copy gene was 1.4 kb. In contrast, in the lines Mitchell and V26 chsA was localized at the distal end of the long arm of chromosome 3, suggesting that a chromosomal rearrangement had taken place. In a transformed Petunia uidA, transgenes were detected using a 2.7 kb probe. One transgene was mapped on one of the homologues of chromosome II proximal to the ribosomal genes. This homologue could be distinguished from the other by having the ribosomal genes at the distal end of the long arm. Using multicolour fluorescence in situ hybridization it was shown that it is possible to detect the endogenous chsA genes and both transgenes simultaneously.  相似文献   

4.
Chromosomes of the pea (Pisum sativum L.) were submitted to fluorescent in situ hybridization (FISH) with probes specific for the oligonucleotides (AG)12, (AC)12, (GAA)10, and (GATA)7 and for the genes encoding 25S rRNA, 5S rRNA and the storage proteins legumin A, K and vicilin. A fourth 5S rRNA gene locus, apparently specific for an accession of the cultivar Grüne Victoria, was newly detected. This allowed all seven chromosome pairs to be distinguished by FISH signals of rRNA genes. The same was possible using a combination of oligonucleotide probes or of oligonucleotides and rRNA gene-specific probes in multicolour FISH. Rehybridization with the 5S rRNA gene-specific probe allowed us to assign vicilin genes to the short arm of chromosome 5, the single legumin A locus to the long arm of chromosome 3 and the legumin B-type genes (exemplified by legumin K) to one locus on the short arm of chromosome 6. Correlation of these data with an updated version of the pea genetic map allowed the assignment of most linkage groups to defined chromosomes. It only remains to be established which of linkage groups IV and VII corresponds to the satellited chromosomes 4 or 7, respectively. Received: 13 February 1998; in revised form: 3 April 1998 / Accepted: 7 April 1998  相似文献   

5.
The 5S ribosomal RNA genes were mapped to mitotic chromosomes of Arabidopsis thaliana by fluorescence in situ hybridization (FISH). In the ecotype Landsberg erecta, hybridization signals appeared on three pairs of chromosomes, two of which were metacentric and the other acrocentric. Hybridization signals on one pair of metacentric chromosomes were much stronger than those on the acrocentric and the other pair of metacentric chromosomes, probably reflecting the number of copies of the genes on the chromosomes. Other ecotypes, Columbia and Wassilewskija, had similar chromosomal distribution of the genes, but the hybridization signals on one pair of metacentric chromosomes were very weak, and detectable only in chromosomes prepared from young flower buds. The chromosomes and arms carrying the 5S rDNA were identified by multi-color FISH with cosmid clones and a centromeric 180 bp repeat as co-probes. The metacentric chromosome 5 and its L arm carries the largest cluster of the genes, and the short arm of acrocentric chromosome 4 carries a small cluster in all three ecotypes. Chromosome 3 had another small cluster of 5S rRNA genes on its L arm. Chromosomes 1 and 2 had no 5S rDNA cluster, but they are morphologically distinguishable; chromosome 1 is metacentric and 2 acrocentric. Using the 5S rDNA as a probe, therefore, all chromosomes of A. thaliana could be identified by FISH. Chromosome 1 is large and metacentric; chromosome 2 is acrocentric carrying 18S-5.8S-25S rDNA clusters on its short arm; chromosome 3 is metacentric carrying a small cluster of 5S rDNA genes on its L arm; chromosome 4 is acrocentric carrying both 18S-5.8S-25S and 5S rDNAs on its short (L) arm; and chromosome 5 is metacentric carrying a large cluster of 5S rDNA on its L arm.  相似文献   

6.
The 5S ribosomal RNA genes have been localized in mitotic and lampbrush chromosomes of Triturus vulgaris meridionalis by in situ hybridization. These genes are clustered in a single locus in an intercalary position of the long arm of chromosome XI. In lampbrush chromosome XI the 5S genes are located near a loop landmark mapped at 66 units.  相似文献   

7.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

8.
Copy numbers of four photosynthesis-related genes, PhyA, Ppc, RbcS and Lhcb1 *1, in wheat genomes were estimated by slot-blot analysis, and these genes were assigned to the chromosome arms of common wheat by Southern hybridization of DNA from an aneuploid series of the cultivar Chinese Spring. The copy number of PhyA was estimated to be one locus per haploid genome, and this gene was assigned to chromosomes 4AL, 4BS and 4DS. The Ppc gene showed a low copy number of small multigenes, and was located on the short arm of homoeologous group 3 chromosomes and the long arm of chromosomes of homoeologous group 7. RbcS consisted of a multigene family, with approximately 100 copies in the common wheat genome, and was located on the short arm of group 2 chromosomes and the long arm of group 5 chromosomes. Lhcb1 *1 also consisted of a multigene family with about 50 copies in common wheat. Only a limited number of restriction fragments (approximately 15%) were used to determine the locations of members of this family on the long arm of group 1 chromosomes owing to the multiplicity of DNA bands. The variability of hybridized bands with the four genes was less in polyploids, but was more in the case of multigene families. RFLP analysis of polyploid wheats and their presumed ancestors was carried out with probes of the oat PhyA gene, the maize Ppc gene, the wheat RbcS gene and the wheat Lhcb1 *1 gene. The RFLP patterns of common wheat most closely resembled those of T. Dicoccum (Emmer wheat), T. urartu (A genome), Ae. speltoides (S genome) and Ae. squarrosa (D genome). Diversification of genes in the wheat complex appear to have occurred mainly at the diploid level. Based on RFLP patterns, B and S genomes were clustered into two major groups. The fragment numbers per genome were reduced in proportion to the increase of ploidy level for all four genes, suggesting that some mechanism(s) might operate to restrict, and so keep to a minimum, the gene numbers in the polyploid genomes. However, the RbcS genes, located on 2BS, were more conserved (double dosage), indicating that the above mechanism(s) does not operate equally on individual genes.  相似文献   

9.
The complete DNA replication sequence of the entire complement of chromosomes in the Chinese hamster may be studied by using the method of continuous H3-thymidine labeling and the method of 5-fluorodeoxyuridine block with H3-thymidine pulse labeling as relief. Many chromosomes start DNA synthesis simultaneously at multiple sites, but the sex chromosomes (the Y and the long arm of the X) begin DNA replication approximately 4.5 hours later and are the last members of the complement to finish replication. Generally, chromosomes or segments of chromosomes that begin replication early complete it early, and those which begin late, complete it late. Many chromosomes bear characteristically late replicating regions. During the last hour of the S phase, the entire Y, the long arm of the X, and chromosomes 10 and 11 are heavily labeled. The short arm of chromosome 1, long arm of chromosome 2, distal portion of chromosome 6, and short arms of chromosomes 7, 8, and 9 are moderately labeled. The long arm of chromosome 1 and the short arm of chromosome 2 also have late replicating zones or bands. The centromeres of chromosomes 4 and 5, and occasionally a band on the short arm of the X are lightly labeled.  相似文献   

10.
Different ribosomal RNA (5S and 25S) genes were investigated simultaneously by fluorescence in situ hybridization (FISH) in Sinapis alba, Raphanus sativus and Brassica napus. The chromosomes of S. alba carried four 5S and six 25S gene sites, and those of R. sativus four sites of each gene, respectively. These two species have one chromosome pair with both rDNA genes; the two are closely located on a short arm of S. alba, while in R. sativus one is distal on the short arm (5S) and the other more proximal on the long arm (25S). In B. napus we have confirmed 12sites of 25S rDNA. The detection of 5S rDNA genes revealed 14 signals on 12 chromosomes. Of these, six chromosomes had signals for both rDNA genes. The FISH with 5S rDNA probes detected two sites closely adjacent in four chromosomes of B napus. These results are discussed in relation to a probable homoeologous chromosome pair in B. oleracea. Received: 20 July 1999 / Accepted: 8 October 1999  相似文献   

11.
The karyotype of Halobatrachus didactylus presents 46 chromosomes, composed of eight metacentric, 18 submetacentric, four subtelocentric, and 16 acrocentric chromosomes. The results of FISH showed that the major ribosomal genes were located in the terminal position of the short arm of a large submetacentric chromosome. They also showed a high variation in the hybridization signals. The products of amplification of 5S rDNA produced bands of about 420 pb. The PCR labeled products showed hybridization signals in the subcentromeric position of the long arm of a submetacentric chromosome of medium size. Double-color FISH indicated that the two ribosomal families are not co-located since they hybridizated in different chromosomal pairs. Telomeres of all the chromosomes hybridized with the (TTAGGG) n probe. The GATA probe displayed a strong signal in the long arm of a submetacentric chromosome of medium size, in the subcentromeric position. The double-color FISH showed that the microsatellite GATA and the 5S rDNA gene are located in different chromosomal pairs. The majority presence of GATA probes in one pair of chromosomes is unusual and considering its distribution through different taxa it could be due to evolutionary mechanisms of heterochromatine accumulation, leading to the formation of differentiated sex chromosomes.  相似文献   

12.
We have constructed and screened cDNA libraries from total maize endosperm poly(A) RNA or from a mRNA fraction enriched in zein sequences. From these libraries we have isolated clones representative of the major classes of zein cDNA sequences and have characterised them by crosshybridisation, by hybrid-selected translation, by in situ hybridisation to maize chromosomes, and hybridisation to genomic Southern blots. We conclude that at least four types of non cross-hybridising zein sequences are present, two coding for light chains and two for heavy chains. At least in the case of the light zeins, there is considerable sequence diversity among the clones which hybridise to each type. Similar results are obtained by translation of the mRNAs selected by each clone. In situ hybridisation shows that the light chain zein genes are located on chromosomes 4, 7, and 10, whilst genes coding for some of the heavy chain zeins are confined to the distal part of the long arm of chromosome 4.  相似文献   

13.
Summary Experiments were conducted to determine the chromosomal location of the gene conditioning overproduction of a methionine-rich, 10-K zein in maize kernels of line BSSS53. In addition, the chromosomal location of the structural gene encoding the overproduced protein was determined. Whereas the structural gene, designated Zps10/(22), was found to be located on the long arm of chromosome 9 near the centromere, the locus regulating overproduction of the zein protein was mapped to the short arm of chromosome 4. This regulatory gene has been designated Zpr10/(22). Regulation of 10-K zein production by Zpr10/(22) is, therefore, via a trans-acting mechanism.  相似文献   

14.
RFLP analyses were performed on wheat-Aegilops uniaristata Vis. addition and translocation lines to confirm the identity of added N-genome chromosomes. Complete 1N, 3N, 4N, 5N and 7N chromosome additions were identified, while the complete long arm and only part of the short arm was identified for chromosome 2N. There were no wheat-like 4/5 and 4/7 translocations in the Ae. uniaristata chromosomes. Chromosome 3N carried an asymmetric pericentric inversion, and the translocation line was a product of centric fusion between the long arms of chromosomes 3B and 3N. Chromosome-specific RAPD and microsatellite markers were also identified for all the added Ae. uniaristata chromosomes available in this set of addition lines. A new genomic in situ hybridization protocol combining pre-annealing of probe and blocking DNA and prehybridization with blocking DNA was developed to differentiate the very closely related genomes of Ae. uniaristata and wheat. Hybridization sites for the repetitive DNA sequences pAs1, pSc119.2 and pTa71 were identified on the N-genome chromosomes of Ae. uniaristata using the fluorescent in situ hybridization technique. Results showed deviation from the previously published ideogram of this species. A new ideogram, which shows the hybridization sites for the above sequences, was produced in which the chromosomes are arranged according to their homoeologous group. Received: 23 April 1999 / Accepted: 6 August 1999  相似文献   

15.
Homologous tritiated 25S, 18S and 5.8S rRNAs were used separately for in situ hybridization to the polytene chromosomes of the embryo suspensor cells of Phaseolus coccineus. Hybridization occurred at the same chromosomal sites which were labeled in previous in situ hybridization experiments with 25+18S rRNAs in the same material (Avanzi et al., 1972), namely: nucleolus organizing system (satellite, nucleolar constriction and organizer) of chromosome pairs I (S1) and V (S2), proximal heterochromatic segment of the long arm of chromosome pair I, and terminal heterochromatic segment of chromosome pair II. Competition hybridization experiments confirmed for P. coccineus the high sequence homology between 25S and 18S rRNA already known for other plants.Homologous 125I-5S rRNA was found to hybridize to three sites in the polytene chromosomes of P. cocdneus: the proximal heterochromatic segment in the long arm of chromosome pair I (which also bears the sequences complementary to 25S, 18S and 5.8S RNAs), most of the proximal heterochromatic segment plus a small portion of adjoining euchromatin in the long arm of chromosome pair VI and the large intercalary heterochromatic segment in the same chromosome pair. Simultaneous labeling of the two 5S RNA sites in chromosome VI was quite rare (3%), the rule being labelling of one site to the exclusion of the other, with a labeling frequency of 43.7% and 53.3% for sites no. 1 and no. 2 respectively. These results are interpreted as being due to differential hybridizability of chromosomal sites such as described in other materials.  相似文献   

16.
The genes encoding two pentraxins, C-reactive protein (CRP) and serum amyloid P component (SAP), are located on the proximal long arm of human chromosome 1. Mapping of the CRP and SAP genes between the centromere and band q32 was achieved by Southern blot analysis of DNA from a panel of human × Chinese hamster somatic cell hybrids carrying defined fragments of human chromosome 1. Both genes were localized more precisely between bands q12 and q23 by in situ hybridization to human metaphase chromosomes.  相似文献   

17.
Maize endosperms accumulate during development a large amount of storage proteins (zeins). The rate of zein accumulation is under the control of several regulatory genes. Two of these, the opaque-2 and opaque-6 mutants, lower the zein level, thus improving the nutritional quality of maize meals. An endosperm protein of Mr 32 000 (b-32) appears to be correlated with the zein level. The b-32 protein is encoded by the opaque-6 gene which, in turn, is activated by opaque-2. We report the purification, amino-acid composition and peptide map of b-32 protein. Furthermore we demonstrate that the protein exists as a monomer likely located in the soluble cytoplasm. As a step towards the isolation of a complementary-DNA clone for b-32 protein, the purification of its corresponding mRNA is described.Abbreviations b-32 endosperm protein of Mr 32000 - cDNA complementary DNA - EDTA ethylenediaminetetraacetic acid - O2, O6 opaque 2, opaque-6 genes - PMSF phenylmethylsulfonylfluoride - RSP reduced soluble proteins - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

18.
A total of 1020 B s Yy +chromosomes was screened for the induction of male sterile mutations by X irradiation. The 29 recovered mutations were analyzed by genetic complementation and the metaphase chromosomes stained with Hoechst 33258 and observed with fluorescence microscopy. The cytological and genetic maps derived from this analysis were compared to similar maps of the Y chromosome mutations isolated in an earlier study (Brosseau, 1960). Unlike the previous work we have identified only 6 male fertility loci (2 on the short arm, 4 on the long arm) on the Y chromosome. These loci are distributed along the length of the long arm and are likely to reside at two separate sites on the short arm. There is no apparent clustering of these fertility factors in this heterochromatic chromosome. The deletions obtained in this study were observed to be unstable and the nature of this instability was investigated. The original Y chromosome was marked at both telomeres with normally X-linked genes. The loss of one or the other of these markers was accompanied in many cases by the concomitant loss of large segments of Y chromosome material. The possible mechanism of this loss is discussed.Author to whom correspondence should be sent  相似文献   

19.
Aegilops umbellulata Zhuk. carries genes at Glu-U1 loci that code for a pair of high-molecular-weight glutenin subunits not found in common wheat, Triticum aestivum. Wheat-Ae. umbellulata recombinant lines were produced with the aim of transferring genes coding for glutenin subunits from Ae. umbellulata into wheat with minimal flanking material. We used fluorescent genomic in situ hybridization to evaluate the extent of recombination and to map physically the translocation breakpoints on 11 wheat-Ae. umbellulata recombinant lines. In situ hybridization was able to identify alien material in wheat and showed breakpoints not only near the centromeres but also along chromosome arms. To characterize and identify chromosomes further, including deletions along the 1U chromosome, we used simultaneous multiple target in situ hybridization to localize a tandemly repeated DNA sequence (pSc119.2) and the 18S–25S and 5S rRNA genes. One line contained an Ae. umbellulata telocentric chromosome and another two had different terminal deletions, mostly with some wheat chromosome rearrangements. Although from six independent original crosses, the other eight lines included only two types of intercalary wheat-Ae. umbellulata recombination events. Five occurred at the 5S rRNA genes on the short arm of the Ae. umbellulata chromosome with a distal wheat-origin segment, and three breakpoints were proximal to the centromere in the long arm, so most of the long arm was of Ae. umbellulata origin. The results allow characterization of recombination events in the context of the karyotype. They also facilitate the design of crossing programmes to generate lines where smaller Ae. umbellulata chromosome segments are transferred to wheat with the potential to improve bread-making quality by incorporating novel glutenin subunits without undesirable linked genes.  相似文献   

20.
Orcein staining, differential staining with CMA and DAPI, and FISH with an rDNA probe were used to compare somatic chromosomes ofCeratozamia mexicana andMicrocycas calocoma. CMA-positive dots and hybridization signals appeared on chromosomes at early interphase and mitotic prophase, but in significantly different number in the two species. InCeratozamia mexicana, the CMA-positive and DAPI-negative bands and the hybridization signal were located at the terminal region of the long arm of three median-centromeric chromosomes, the terminal region of the short arm of two median-centromeric chromosomes and the terminal region of the long arm of two subterminal-centromeric chromosomes. InMicrocycas calocoma, they were located at the pericentric region of two median-centromeric chromosomes. These chromosome data suggested thatMicrocycas has no simple Robertsonian relationship toCeratozamia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号