首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.  相似文献   

2.
Regulation of epithelial barrier function requires targeted insertion of tight junction proteins that have distinct selectively permeable characteristics. The insertion of newly synthesized proteins and recycling of internalized tight junction components control both polarity and junction function. Here we show that the small GTPase Rab14 regulates tight junction structure. In Madin–Darby canine kidney (MDCK) II cells, Rab14 colocalizes with junctional proteins, and knockdown of Rab14 results in increased transepithelial resistance. In cells without Rab14, there are small changes in the trafficking of claudin-1 and occludin. In addition, there is substantial depletion of the leaky claudin, claudin-2, but not other tight junction components. The loss of claudin-2 is complemented by inhibition of lysosomal function, suggesting that Rab14 sorts claudin-2 out of the lysosome-directed pathway. MDCK I cells lack claudin-2 endogenously, and knockdown of Rab14 in these cells does not result in a change in transepithelial resistance, suggesting that the effect is specific to claudin-2 trafficking. Furthermore, leaky claudins have been shown to be required for epithelial morphogenesis, and knockdown of Rab14 results in failure to form normal single-lumen cysts in three-dimensional culture. These results implicate Rab14 in specialized trafficking of claudin-2 from the recycling endosome.  相似文献   

3.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

4.
Tight junctions are the main intercellular junctions of podocytes of the renal glomerulus under nephrotic conditions. Their requisite components, claudins, still remain to be identified. We have measured the mRNA levels of claudin subtypes by quantitative real-time PCR using isolated rat glomeruli. Claudin-5 was found to be expressed most abundantly in glomeruli. Mass spectrometric analysis of membrane preparation from isolated glomeruli also confirmed only claudin-5 expression without any detection of other claudin subtypes. In situ hybridization and immunolocalization studies revealed that claudin-5 was localized mainly in glomeruli where podocytes were the only cells expressing claudin-5. Claudin-5 protein was observed on the entire surface of podocytes including apical and basal domains of the plasma membrane in the normal condition and was inclined to be concentrated on tight junctions in puromycin aminonucleoside nephrosis. Total protein levels of claudin-5 in isolated glomeruli were not significantly upregulated in the nephrosis. These findings suggest that claudin-5 is a main claudin expressed in podocytes and that the formation of tight junctions in the nephrosis may be due to local recruitment of claudin-5 rather than due to total upregulation of the claudin protein levels.  相似文献   

5.
Claudins are a family of proteins that are localized to tight junctions at the apical surface of epithelial cell layers. Over 24 family members have been identified in vertebrates. Despite being well-studied with respect to their function in tight junction selectivity and permeability, the embryonic expression patterns of most claudin family members have not been thoroughly investigated. Here, we report the cloning and expression pattern of a novel chick claudin family member that is most closely related to human claudin-1. Chick claudin-1 was expressed throughout the ectoderm of stage 4-6 chick embryos. Claudin-1 expression was particularly high in the neural epithelium and open neural tube, but decreased as the neural tube closed. High levels of claudin-1 expression were also observed in the developing otic vesicle, nasal placode, ectodermal component of the pharyngeal arches, and in the apical ectodermal ridge of the limb bud from stage 17 onwards. Claudin-1 expression was also detected in scleral papillae, feather buds and migrating primordial germ cells. Lower levels of claudin-1 expression were observed in the endoderm, the ventral pharynx, and several of its derivatives including the bronchi, developing lung epithelium, esophagus, and gut. Claudin-1 expression was detected in the nephric duct and the mesonephros, which are epithelialized derivatives of the intermediate mesoderm, but not in any other mesodermal derivates, including the heart, somites and developing muscle. With the exception of the migrating primordial germ cells and the primitive streak, all other tissues that expressed significant levels of claudin-1 were epithelialized.  相似文献   

6.
Airway epithelial tight junctions (TJs) serve to separate the external and internal environments of the lung. However, the members of the claudin family that mediate this function have not been fully delineated. We characterized the claudin expression in normal airways removed from human donors during lung transplantation and determined the contribution of each claudin to airway barrier function. Stable cell lines in NIH/3T3 and human airway (IB3.1) cells were constructed expressing the claudin components found in the human airway, claudin-1, -3, or -5. The effects of claudin expression on transepithelial resistance, permeability coefficients, and claudin-claudin interactions were assessed. Claudin-1 and -3 decreased solute permeability, whereas claudin-5 increased permeability. We also detected oligomerization of claudin-5 in cell lines and in freshly excised human airways. Coimmunoprecipitation studies revealed heterophilic interactions between claudin species in both cell lines and human airway epithelium. These suggest that airway TJs are regulated by claudinclaudin interactions that confer the selectivity of the junction.  相似文献   

7.
Regulation of heterotypic claudin compatibility   总被引:4,自引:0,他引:4  
Tissue barrier function is directly mediated by tight junction transmembrane proteins known as claudins. Cells that form tight junctions typically express multiple claudin isoforms which suggests that heterotypic (head-to-head) binding between different claudin isoforms may play a role in regulating paracellular permeability. However, little is known about motifs that control heterotypic claudin compatibility. We found that although claudin-3 and claudin-4 were heteromerically compatible when expressed in the same cell, they did not heterotypically interact despite having extracellular loop (EL) domains that are highly conserved at the amino acid level. Claudin-1 and -5, which were heterotypically compatible with claudin-3, did not heterotypically bind to claudin-4. In contrast, claudin-4 chimeras containing either the first EL domain or the second EL domain of claudin-3 were able to heterotypically bind to claudin-1, claudin-3, and claudin-5. Moreover, a single point mutation in the first extracellular loop domain of claudin-3 to convert Asn(44) to the corresponding amino acid in claudin-4 (Thr) produced a claudin capable of heterotypic binding to claudin-4 while still retaining the ability to bind to claudin-1 and -5. Thus, control of heterotypic claudin-claudin interactions is sensitive to small changes in the EL domains.  相似文献   

8.
The choroid plexus epithelium controls the movement of solutes between the blood and the cerebrospinal fluid. It has been considered as a functionally more immature interface during brain development than in adult. The anatomical basis of this barrier is the interepithelial choroidal junction whose tightness has been attributed to the presence of claudins. We used quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry to identify different claudins in the choroid plexuses of developing and adult rats. Claudin-1, -2, and -3 were highly and selectively expressed in the choroid plexus as compared to brain or parenchyma microvessels and were localized at epithelial junctions. Claudin-6, -9, -19, and -22 also displayed a previously undescribed choroidal selectivity, while claudin-4, -5, and -16 were enriched in the cerebral microvessels. The choroidal pattern of tight junction protein expression in prenatal brains was already complex and included occludin and zonula occludens proteins. It differed from the adult pattern in that the pore-forming claudin-2, claudin-9, and claudin-22 increased during development, while claudin-3 and claudin-6 decreased. Claudin-2 and claudin-11 presented a mirror image of abundance between lateral ventricle and fourth ventricle choroid plexuses. Imunohistochemical analysis of human fetal and postnatal brains for claudin-1, -2, and -3 demonstrated their early presence and localization at the apico-lateral border of the choroid plexus epithelial cells. Overall, choroidal epithelial tight junctions are already complex in developing brain. The observed differences in claudin expression between developing and adult choroid plexuses may indicate developmental differences in selective blood–cerebrospinal fluid transport functions.  相似文献   

9.
Claudins are transmembrane proteins of the tight junction that determine and regulate paracellular ion permeability. We previously reported that claudin-8 reduces paracellular cation permeability when expressed in low-resistance Madin-Darby canine kidney (MDCK) II cells. Here, we address how the interaction of heterologously expressed claudin-8 with endogenous claudin isoforms impacts epithelial barrier properties. In MDCK II cells, barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 protein at the tight junction. Here, we show that this is not because of relocalization of claudin-2 into the cytosolic pool but primarily due to a decrease in gene expression. Claudin-8 also affects the trafficking of claudin-2, which was displaced specifically from the junctions at which claudin-8 was inserted. To test whether replacement of cation-permeable claudin-2 mediates the effect of claudin-8 on the electrophysiological phenotype of the host cell line, we expressed claudin-8 in high-resistance MDCK I cells, which lack endogenous claudin-2. Unlike in MDCK II cells, induction of claudin-8 in MDCK I cells (which did not affect levels of endogenous claudins) did not alter paracellular ion permeability. Furthermore, when endogenous claudin-2 in MDCK II cells was downregulated by epidermal growth factor to create a cell model with low transepithelial resistance and low levels of claudin-2, the permeability effects of claudin-8 were also abolished. Our findings demonstrate that claudin overexpression studies measure the combined effect of alterations in both endogenous and exogenous claudins, thus explaining the dependence of the phenotype on the host cell line.  相似文献   

10.
The tight junction of the epithelial cell determines the characteristics of paracellular permeability across epithelium. Recent work points toward the claudin family of tight junction proteins as leading candidates for the molecular components that regulate paracellular permeability properties in epithelial tissues. Madin-Darby canine kidney (MDCK) strain I and II cells are models for the study of tight junctions and based on transepithelial electrical resistance (TER) contain "tight" and "leaky" tight junctions, respectively. Overexpression studies suggest that tight junction leakiness in these two strains of MDCK cells is conferred by expression of the tight junction protein claudin-2. Extracellular signal-regulated kinase (ERK) 1/2 activation by hepatocyte growth factor treatment of MDCK strain II cells inhibited claudin-2 expression and transiently increased TER. This process was blocked by the ERK 1/2 inhibitor U0126. Transfection of constitutively active mitogen-activated protein kinase/extracellular signal-regulated kinase kinase into MDCK strain II cells also inhibited claudin-2 expression and increased TER. MDCK strain I cells have higher levels of active ERK 1/2 than do MDCK strain II cells. U0126 treatment of MDCK strain I cells decreased active ERK 1/2 levels, induced expression of claudin-2 protein, and decreased TER by approximately 20-fold. U0126 treatment also induced claudin-2 expression and decreased TER in a high resistance mouse cortical collecting duct cell line (94D). These data show for the first time that the ERK 1/2 signaling pathway negatively controls claudin-2 expression in mammalian renal epithelial cells and provide evidence for regulation of tight junction paracellular transport by alterations in claudin composition within tight junction complexes.  相似文献   

11.
The MEKK3/MEK5/ERK5 signaling axis is required for cardiovascular development in vivo. We analyzed the physiological role of ERK5 in cardiac endothelial cells and the consequence of activation of this kinase by the statin class of HMG Co‐A reductase inhibitor drugs. We utilized human cardiac microvascular endothelial cells (HCMECs) and altered ERK5 expression using siRNA mediated gene silencing or overexpression of constitutively active MEK5 and ERK5 to reveal a role for ERK5 in regulating endothelial tight junction formation and cell permeability. Statin treatment of HCMECs stimulated activation of ERK5 and translocation to the plasma membrane resulting in co‐localization with the tight junction protein ZO‐1 and a concomitant reduction in endothelial cell permeability. Statin mediated activation of ERK5 was a consequence of reduced isoprenoid synthesis following HMG Co‐A reductase inhibition. Statin pretreatment could overcome the effect of doxorubicin in reducing endothelial tight junction formation and prevent increased permeability. Our data provide the first evidence for the role of ERK5 in regulating endothelial tight junction formation and endothelial cell permeability. Statin mediated ERK5 activation and the resulting decrease in cardiac endothelial cell permeability may contribute to the cardioprotective effects of statins in reducing doxorubicin‐induced cardiotoxicity.  相似文献   

12.
Splenic sinus endothelial cells, which adhere through tight and adherens junctions, regulate the passage of blood cells through the splenic cord. The objective of this study was to assess the localization of tight junctional proteins, claudin-5 and ZO-1 in the sinus endothelial cells of rat spleen and to characterize spatial and functional relationships between tight and adherens junctions. Immunofluorescence microscopy of tissue cryosections demonstrated that claudin-5, ZO-1, and α-catenin were distinctly localized in the junctional regions of adjacent endothelial cells. Immunogold electron microscopy demonstrated claudin-5 localized in the tight-junctional fused membranes of adjacent endothelial cells. Immunogold labeling for ZO-1 was localized not only in the tight-junctional-fused membranes of endothelial cells but also in the junctional membrane. α-Catenin was intermittently localized along the juxtaposed junctional membranes of adjacent endothelial cells. Double-staining immunogold microscopy for claudin-5 and ZO-1, claudin-5 and VE-cadherin, ZO-1 and VE-cadherin, and ZO-1 and α-catenin demonstrated that ZO-1 was closely localized to VE-cadherin and α-catenin in their juxtaposed membranes of endothelial cells. Thus, ZO-1 might play an important role in regulating the cell–cell junctions of sinus endothelial cells for blood–cell passage through splenic cords. This work was supported by a Grant-in-Aid for Scientific Research (C), Japan.  相似文献   

13.
Claudin-4 regulates ion permeability via a paracellular pathway in renal epithelial cells, but its other physiological functions have not been examined. We found that hyperosmotic stress increases claudin-4 expression in Madin-Darby canine kidney cells. Here, we examined whether claudin-4 affects cell motility, cell association, and the intracellular distribution of endogenous junctional proteins. Doxycycline-inducible expression of claudin-4 did not change endogenous levels of claudin-1, claudin-2, claudin-3, occludin, E-cadherin, and ZO-1. Claudin-4 overexpression increased cell association and decreased cell migration without affecting cell proliferation. Doxycycline did not change cell junctional protein levels, cell association or cell migration in mock-transfected cells. The insolubility of claudin-1 and -3 in Triton X-100 was increased by claudin-4 overexpression, but that of claudin-2, occludin, ZO-1, and E-cadherin was unchanged. Immunocytochemistry showed that claudin-4 overexpression increases the accumulation of claudin-1 and -3 in tight junctions (TJs). Furthermore, claudin-4 overexpression increased the association of claudin-4 with claudin-1 and -3. These results suggest that claudin-4 accumulates claudin-1 and -3 in TJs to enhance cell-cell contact in renal tubular epithelial cells.  相似文献   

14.
The claudin family of proteins are integral components of tight junctions and are responsible for determining the ion specificity and permeability of paracellular transport within epithelial and endothelial cell layers. Studies in human, mouse, Xenopus, and zebrafish have shown that only a limited number of claudins are expressed in endothelial cells. Here, we report the expression pattern of Claudin-5 during chick development. Between HH stage 4 and 6 Claudin-5 expression was observed exclusively in extraembryonic tissue. Claudin-5 expression was not observed in the embryo until HH stage 8, coincident with the onset of embryonic vascularization. Claudin-5 expression was maintained in the developing vasculature in the embryonic and extraembryonic tissue throughout organogenesis (HH stage 19–35), including the vasculature of the ectoderm and of organs derived from the mesoderm and endoderm lineages. These data describe a conserved expression pattern for Claudin-5 in the endothelial tight junction barrier and is the first report of the onset of Claudin-5 expression in a vertebrate embryo.  相似文献   

15.
Regulated transport of proteins to distinct plasma membrane domains is essential for the establishment and maintenance of cell polarity in all eukaryotic cells. The Rab family small G proteins play a crucial role in determining the specificity of vesicular transport pathways. Rab3B and Rab13 localize to tight junction in polarized epithelial cells and cytoplasmic vesicular structures in non-polarized fibroblasts, but their functions are poorly understood. Here we examined their roles in regulating the cell-surface transport of apical p75 neurotrophin receptor (p75NTR), basolateral low-density lipoprotein receptor (LDLR), and tight junctional Claudin-1 using transport assay in non-polarized fibroblasts. Overexpression of Rab3B mutants inhibited the cell-surface transport of LDLR, but not p75NTR and Claudin-1. In contrast, overexpression of Rab13 mutants impaired the transport of Claudin-1, but not LDLR and p75NTR. These results suggest that Rab3B and Rab13 direct the cell-surface transport of LDLR and Claudin-1, respectively, and may contribute to epithelial polarization.  相似文献   

16.
In salivary glands, primary saliva is produced by acini and is modified by the reabsorption and secretion of ions in the ducts. Thus, the permeability of intercellular junctions in the ducts is considered to be lower than in the acini. We have examined the relationship between the expressed claudin isotypes and the barrier functions of tight junctions in a submandibular gland epithelial cell line, SMIE. SMIE cells were originally derived from rat submandibular duct cells, but their barrier functions are not as efficient as those of Madin-Darby canine kidney cells. Large molecules, such as 70-kDa dextran, diffuse across the monolayers, although E-cadherin and occludin, adherens junction and tight junction proteins, respectively, are expressed in SMIE cells. Claudin-3 protein has also been detected, but the expression level of claudin-3 mRNA is much lower than in the original submandibular glands. Other claudins including claudin-4 (originally expressed in the duct cells) have not been detected. Because of the limited expression of claudins, SMIE cells are suitable for studying the role(s) of claudins. To examine the function of claudin-4 in submandibular glands, we have overexpressed green fluorescence protein (GFP)-fused claudin-4 in SMIE cells. Cells that express GFP-fused claudin-4 have a higher transepithelial electrical resistance and a lower permeability of 70-kDa dextran, although the expression levels of occludin and claudin-3 are hardly affected. Therefore, claudin-4 plays a role in the regulation of the barrier function of tight junctions in submandibular glands. This work was supported by Grants-in-Aid for scientific research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (16591868), by a Nihon University Multidisciplinary Research Grant for 2006 and 2007, and by a Grant-in-Aid for a 2003 Multidisciplinary Research Project from MEXT.  相似文献   

17.
Claudins are a family of integral membrane proteins of the tight junction that are thought to participate in the permeation of solutes across epithelia via the paracellular pathway. Claudin-8 is expressed in the distal renal tubule, which has a characteristically low passive permeability to monovalent cations. To test the hypothesis that claudin-8 plays a role in forming a tight paracellular barrier to cations, stably transfected Madin-Darby canine kidney II cell lines with inducible expression of claudin-8 were generated. Induction of claudin-8 expression was associated with down-regulation of endogenous claudin-2 protein. Other tight junction proteins were expressed and targeted normally, and the number of junctional strands was minimally altered. By Ussing chamber and radiotracer flux studies, claudin-8 expression was found to reduce paracellular permeability to monovalent inorganic and organic cations and to divalent cations but not to anions or neutral solutes. The size selectivity, charge dependence, and activation energy of paracellular cation permeation were all unchanged. These observations are consistent with a model in which claudin-2 encodes a highly cation-permeable channel, whereas claudin-8 acts primarily as a cation barrier. When exogenous claudin-8 is expressed, it replaces endogenous claudin-2, inserting in its place into existing tight junction strands, thereby reducing the apparent number of functional cation pores. Our findings suggest that claudin-8 plays an important role in the paracellular cation barrier of the distal renal tubule.  相似文献   

18.
Study of claudin function by RNA interference   总被引:12,自引:0,他引:12  
Claudins are tight junction proteins that play a key selectivity role in the paracellular conductance of ions. Numerous studies of claudin function have been carried out using the overexpression strategy to add new claudin channels to an existing paracellular protein background. Here, we report the systematic knockdown of endogenous claudin gene expression in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells using small interfering RNA against claudins 1-4 and 7. In MDCK cells (showing cation selectivity), claudins 2, 4, and 7 are powerful effectors of paracellular Na+ permeation. Removal of claudin-2 depressed the permeation of Na+ and resulted in the loss of cation selectivity. Loss of claudin-4 or -7 expression elevated the permeation of Na+ and enhanced the proclivity of the tight junction for cations. On the other hand, LLC-PK1 cells express little endogenous claudin-2 and show anion selectivity. In LLC-PK1 cells, claudin-4 and -7 are powerful effectors of paracellular Cl- permeation. Knockdown of claudin-4 or -7 expression depressed the permeation of Cl- and caused the tight junction to lose the anion selectivity. In conclusion, claudin-2 functions as a paracellular channel to Na+ to increase the cation selectivity of the tight junction; claudin-4 and -7 function either as paracellular barriers to Na+ or as paracellular channels to Cl-, depending upon the cellular background, to decrease the cation selectivity of the tight junction.  相似文献   

19.
The dysfunction of alveolar barriers is a critical factor in the development of lung injury and subsequent fibrosis, but the underlying molecular mechanisms remain poorly understood. To clarify the pathogenic roles of tight junctions in lung injury and fibrosis, we examined the altered expression of claudins, the major components of tight junctions, in the lungs of disease models with pulmonary fibrosis. Among the 24 known claudins, claudin-1, claudin-3, claudin-4, claudin-7, and claudin-10 were identified as components of airway tight junctions. Claudin-5 and claudin-18 were identified as components of alveolar tight junctions and were expressed in endothelial and alveolar epithelial cells, respectively. In experimental bleomycin-induced lung injury, the levels of mRNA encoding tight junction proteins were reduced, particularly those of claudin-18. The integrity of the epithelial tight junctions was disturbed in the fibrotic lesions 14 days after the intraperitoneal instillation of bleomycin. These results suggest that bleomycin mainly injured alveolar epithelial cells and impaired alveolar barrier function. In addition, we analyzed the influence of transforming growth factor-β (TGF-β), a critical mediator of pulmonary fibrosis that is upregulated after bleomycin-induced lung injury, on tight junctions in vitro. The addition of TGF-β decreased the expression of claudin-5 in human umbilical vein endothelial cells and disrupted the tight junctions of epithelial cells (A549). These results suggest that bleomycin-induced lung injury causes pathogenic alterations in tight junctions and that such alterations seem to be induced by TGF-β.  相似文献   

20.
Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1. S408 dephosphorylation reduces occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobile fractions of these proteins to converge. Claudin-4 exchange is not affected. ZO-1 domains that mediate interactions with occludin and claudins are required for increases in claudin-2 exchange, suggesting assembly of a phosphorylation-sensitive protein complex. Consistent with this, binding of claudin-1 and claudin-2, but not claudin-4, to S408A occludin tail is increased relative to S408D. Finally, CK2 inhibition reversed IL-13-induced, claudin-2-dependent barrier loss. Thus, occludin S408 dephosphorylation regulates paracellular permeability by remodeling tight junction protein dynamic behavior and intermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic potential in inflammation-associated barrier dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号