首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
Boege K 《Oecologia》2005,143(1):117-125
Traits influencing plant quality as food and/or shelter for herbivores may change during plant ontogeny, and as a consequence, influence the amount of herbivory that plants receive as they develop. In this study, differences in herbivore density and herbivory were evaluated for two ontogenetic stages of the tropical tree Casearia nitida. To assess plant ontogenetic differences in foliage quality as food for herbivores, nutritional and defensive traits were evaluated in saplings and reproductive trees. Predatory arthropods were quantified and the foraging preferences of a parasitoid wasp of the genus Zacremnops were assessed. In addition, survival rates of lepidopteran herbivores (Geometridae) were evaluated experimentally. Herbivore density was three times higher and herbivory was 66% greater in saplings than in reproductive trees. Accordingly, concentrations of total foliar phenolics were higher in reproductive trees than in saplings, whereas leaf toughness, water and nitrogen concentration did not vary between ontogenetic stages. Survival rates of lepidopteran larvae exposed to natural enemies were equivalent in reproductive trees and saplings. Given the greater herbivore density on saplings, equal survival rates implied a greater foraging effort of predators on reproductive trees. Furthermore, observed foraging of parasitoid wasps was restricted to reproductive trees. I propose that herbivore density, and as a consequence, leaf damage were lower in reproductive trees than in saplings due to both traits influencing food quality, and architectural or unmeasured indirect defensive traits influencing foraging preference of natural enemies of herbivores.  相似文献   

2.
Gonthier DJ 《PloS one》2012,7(1):e28703
Strong effects of predator chemical cues on prey are common in aquatic and marine ecosystems, but are thought to be rare in terrestrial systems and specifically for arthropods. For ants, herbivores are hypothesized to eavesdrop on ant chemical communication and thereby avoid predation or confrontation. Here I tested the effect of ant chemical cues on herbivore choice and herbivory. Using Margaridisa sp. flea beetles and leaves from the host tree (Conostegia xalapensis), I performed paired-leaf choice feeding experiments. Coating leaves with crushed ant liquids (Azteca instabilis), exposing leaves to ant patrolling prior to choice tests (A. instabilis and Camponotus textor) and comparing leaves from trees with and without A. instabilis nests resulted in more herbivores and herbivory on control (no ant-treatment) relative to ant-treatment leaves. In contrast to A. instabilis and C. textor, leaves previously patrolled by Solenopsis geminata had no difference in beetle number and damage compared to control leaves. Altering the time A. instabilis patrolled treatment leaves prior to choice tests (0-, 5-, 30-, 90-, 180-min.) revealed treatment effects were only statistically significant after 90- and 180-min. of prior leaf exposure. This study suggests, for two ecologically important and taxonomically diverse genera (Azteca and Camponotus), ant chemical cues have important effects on herbivores and that these effects may be widespread across the ant family. It suggests that the effect of chemical cues on herbivores may only appear after substantial previous ant activity has occurred on plant tissues. Furthermore, it supports the hypothesis that herbivores use ant chemical communication to avoid predation or confrontation with ants.  相似文献   

3.
Diversity of birch sawfly responses to seasonally atypical diets   总被引:4,自引:0,他引:4  
Most insect herbivores are specialised on a particular plant taxon. To have a better understanding of host shift functions and consequences for insect herbivores, it is essential to gather more information on the effects of variation in host quality on specialists across species and environments. We examined the effects of seasonally atypical food on mortality, developmental time, and final body mass of six sawfly species (Hymenoptera: Symphyta) feeding on the foliage of mountain birch (Betula pubescens ssp. czerepanovii), whose pooled larval feeding periods form a gradient and cover the growing season. Insect phenology was manipulated so that the larvae of early-season species would feed on atypically mature leaves and mid- or late-season species would feed on atypically young leaves of their major host plant. Mortality increased dramatically for all species when the larval feeding schedule was advanced or delayed. This indicates a high degree of specialisation not only on a particular host but also to its phenological phases. The main cause of mortality on novel food was a rejection of the diet by the young larvae and their subsequent starvation. An interesting observation was that late-season species showed this response on nutritious young foliage. The effects of seasonally atypical diets on larval development and growth were species-specific and milder than the effects on mortality. Interestingly, for those individuals that accepted it, atypical food seemed to be most beneficial for species appearing at both ends of the seasonal gradient, which might be related to a wider exposure to variable food quality in natural conditions compared with other species. The diversity of responses to atypical food among closely related herbivore species with overlapping feeding periods on the same host plant is the most crucial finding of this study.  相似文献   

4.
Species‐specific responses to climate change will lead to changes in species interactions across multiple trophic levels. Interactions between plants and their insect herbivores, in particular, may become increasingly disrupted if mobile herbivores respond more rapidly to climatic change than their associated host plants. We present a multispecies transplant experiment aimed at assessing potential climatic impacts on patterns of leaf herbivory. Four shrubby understorey plant species were transplanted outside their native range into a climate 2.5°C warmer in annual mean temperature. After 12 months, we assessed the types and amount of herbivore leaf damage, compared with plants transplanted to a control site within their native range. The overall amount of foliage loss to herbivores ranged from approximately 3–10% across species and sites, a range consistent with most estimates of leaf loss in other studies. The most common types of leaf damage were sucking and chewing and this pattern was consistent for all four plant species at all sites. There were no significant differences in levels and patterns of herbivory between control and warm sites for three out of four plant species. This suggests that with moderate climate warming, most herbivory will continue to be dominated by chewers and suckers, and that the overall level of foliage loss will be similar to that experienced presently.  相似文献   

5.
Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.  相似文献   

6.
Damage to sagebrush attracts predators but this does not reduce herbivory   总被引:2,自引:0,他引:2  
Emissions of volatiles increase following herbivory from many plant species and volatiles may serve multiple functions. Herbivore‐induced volatiles attract predators and parasitoids of herbivores and are often assumed to benefit plants by facilitating top‐down control of herbivores; this benefit of induced emissions has been tested only a few times. Volatile compounds released by experimentally clipped sagebrush shoots have been shown to reduce levels of chewing damage experienced by other shoots on the same plant and on neighboring sagebrush plants. In this study, I asked whether experimental clipping attracted predators of herbivorous insects to sagebrush shoots. I also evaluated aphid populations and chewing damage on clipped and unclipped shoots and whether predators were likely to have caused differences in aphids and chewing damage. Shoots that had been clipped recruited more generalist predators, particularly coccinellids and Geocoris spp. in visual surveys conducted during two seasons. Clipping also caused increased numbers of parasitized aphids in one season. Ants were common tending aphids but were not significantly affected by clipping. Despite the increase in generalist predators, clipped plants were more likely to support populations of aphids that increased during both seasons compared to aphids on unclipped control plants. Clipped shoots suffered less damage by chewing herbivores in the 1‐year in which this was measured. Chewing damage was not correlated with numbers of predators. These results suggest that predators and parasitoids were attracted to experimentally clipped sagebrush plants but that these predators were not effective at reducing net damage to the plant. This conclusion is not surprising as much of the herbivory is inflicted by grasshoppers and deer, herbivores that are not vulnerable to the predators attracted to sagebrush volatiles. More generally, it should not be assumed that predators that are attracted by herbivore‐induced volatiles necessarily benefit the plant without testing this hypothesis under field conditions.  相似文献   

7.
Plants are frequently attacked by both above- and belowground arthropod herbivores. Nevertheless, studies rarely consider root and shoot herbivory in conjunction. Here we provide evidence that the root-feeding insect Agriotes lineatus reduces the performance of the foliage feeding insect Spodoptera exigua on cotton plants. In a bioassay, S. exigua larvae were allowed to feed on either undamaged plants, or on plants that had previously been exposed to root herbivory, foliar herbivory, or a combination of both. Previous root herbivory reduced the relative growth rates as well as the food consumption of S. exigua by more than 50% in comparison to larvae feeding on the undamaged controls. We found no effects in the opposite direction, as aboveground herbivory by S. exigua did not affect the relative growth rates of root-feeding A. lineatus . Remarkably, neither did the treatment with foliar herbivory affect the food consumption and relative growth rate of S. exigua in the bioassay. However, this treatment did result in a significant change in the distribution of S. exigua feeding. Plants that had been pre-exposed to foliar herbivory suffered significantly less damage on their young terminal leaves. While plant growth and foliar nitrogen levels were not affected by any of the treatments, we did find significant differences between treatments with respect to the level and distribution of plant defensive chemicals (terpenoids). Exposure to root herbivores resulted in an increase in terpenoid levels in both roots as well as in mature and immature foliage. Foliar damage, on the other hand, resulted in high terpenoid levels in young, terminal leaves only. Our results show that root-feeding herbivores may change the level and distribution of plant defenses aboveground. Our data suggest that the reported interactions between below- and aboveground insect herbivores are mediated by induced changes in plant secondary chemistry.  相似文献   

8.
1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were connected to pine by a linear food chain, a trophic cascade occurred. Where birds fed as intraguild predators, the reticulate food webs linking birds to pine and mistletoe resulted in no net effects on herbivores or plant biomass. Our study shows that this variation in food web structure occurred between sympatric plants and within plants between differing herbivore guilds.  相似文献   

9.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

10.
Communities are riddled with indirect species interactions and these interactions can be modified by organisms that are parasitic or symbiotic with one of the indirectly interacting species. By inducing plant responses, herbivores are well known to alter the plant quality for subsequent feeders. The reduced performance of herbivores on induced plants cascades into effects on the performance of higher trophic level organisms such as parasitoids that develop inside herbivores. Parasitoids themselves may also, indirectly, interact with the host plant by affecting the behaviour and physiology of their herbivorous host. Here, we show that, through their herbivorous host, larvae of two parasitoid species differentially affect plant phenotypes leading to asymmetric interactions among parasitoid larvae developing in different hosts that feed on the same plant. Our results show that temporally separated parasitoid larvae are involved in indirect plant-mediated interactions by a network of trophic and non-trophic relationships.  相似文献   

11.
When plants are sequentially attacked by multiple herbivores, herbivore identity and host specialization can greatly influence the patterns of herbivore–herbivore and plant–herbivore interactions. However, how prior herbivory and the resulting induced plant responses potentially affect subsequent herbivores deserves further investigation. In this study, we conducted a common-garden experiment that manipulated sequential herbivory by the specialist caterpillar Gadirtha fusca Pogue (Lepidoptera: Nolidae) and the generalist caterpillar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae). We tested how prior exposure to herbivores with different levels of host specialization affected the performance of subsequently arriving con- and heterospecifics, as well as plant growth and defense responses under subsequent herbivory. We found that prior exposure to the specialist G. fusca facilitated the performance of subsequent conspecifics, resulting in a significant decrease in the growth (height and stem diameter at ground level) of tallow plants. However, prior exposure to the generalist S. litura did not affect the feeding of subsequent con- or heterospecifics or the growth of tallow plants. Sequential herbivory by specialist and generalist conspecifics resulted in lower levels of tannins and flavonoids, respectively, in leaves of tallow plants, whereas sequential herbivory by the two species did not affect the levels of tannins or flavonoids, compared to a single damage event. We conclude that herbivore species-specific plant responses appear to be more important than herbivore identity or specialization in determining herbivore–herbivore interactions and plant responses to sequential herbivore attack.  相似文献   

12.
Abstract Plants can respond to herbivore damage through both broad-scale (systemic) and localized induced responses. While many studies have quantified the impact of systemic responses on herbivores, measuring the impact of localized changes is difficult because plant tissues that have suffered direct damage may represent both a lower quality and a lower quantity of food. This article uses nonlinear models to disentangle the confounding effects of prior herbivory on food quantity and quality. The first (null) model assumes that herbivore performance is determined only by the quantity of food available to an average herbivore. Modified models allow two distinct effects of damage-induced defenses: an increase in the amount of food each herbivore is required to consume in order to achieve maximum performance and a reduction in the maximum performance even when herbivores are fed ad lib. Maximum likelihood methods were used to fit the models to data from field experiments in which Colorado potato beetle (Leptinotarsa decemlineata) larvae were reared on three varieties of potatoes that had been damaged to varying degrees by adult beetles. Prior damage reduced the mean mass of beetles at pupation, and this effect was due to both a decrease in food quantity and induced changes in food quality. In contrast, beetle survival was affected in some cases by reduced food quantity but showed no responses that could be attributed to induced defenses. I discuss this result in the context of previous studies of induced (mostly systemic) responses in the potato-potato beetle system, and I suggest that detailed studies of particular chemical responses and the proposed method of combining bioassays with quantitative models should be used as complementary approaches in future studies of herbivore-induced defenses in plants.  相似文献   

13.
Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant’s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.  相似文献   

14.
Understanding the mechanisms regulating the diversity and distribution of arthropods is essential to understanding food web interactions and ecosystem functioning. Local arthropod diversity is known to be linked to features of surrounding landscapes, including the area of human‐developed land. Yet, how such landscape moderation of diversity affects processes within local sites remains understudied. We report on a study that 1) measured the impacts of human development surrounding old‐field habitats of arthropods on arthropod food web structure within those habitats and 2) determined if these shifts were associated with cascading impacts on the plant community. We sampled the arthropod community in 16 old‐fields that span an urban‐rural gradient throughout southern New England, USA. In each field, we also established paired mesocosms enclosing vegetation, one of which allowed arthropod herbivory while the other excluded such interactions, to isolate impacts of arthropod herbivory on three functional groups of plants: grasses, goldenrod and non‐goldenrod forbs. Biomass of both herbivorous and predatory arthropods were positively related to the proportion of natural area surrounding a field early in the growing season (June). This relationship persisted later into the season for predatory arthropods (through July), but not for herbivorous arthropods. We found no evidence that the biomass of predators was related to the abundance of herbivorous arthropods in a field; or that biomass of herbivores was correlated to change in plant biomass between the two types of mesocosms. We did, however, find that in fields with low predator abundance there was greater herbivory on grasses (nutritious host), but that in high predator fields goldenrod was increasingly impacted (safe host), as is predicted by past work in old‐field ecosystems. The findings support the generalizability of landscape moderated biodiversity to non‐agricultural systems and suggests that observed shifts in food webs have implications for community and ecosystem dynamics.  相似文献   

15.
Priming of indirect defences   总被引:6,自引:0,他引:6  
Heil M  Kost C 《Ecology letters》2006,9(7):813-817
  相似文献   

16.
Bottom‐up and top‐down impacts on herbivores can be influenced by plant productivity, structural complexity, vigor and size. Although these traits are likely to vary with plant development, the influence of plant ontogeny on the relative importance of plant quality (i.e. bottom‐up forces) and predation risk (i.e. top‐down forces) has been the focus of little previous investigation. We evaluated the role of plant ontogeny for the relative importance of bottom‐up and top‐down forces on insect herbivore abundance, species richness, and species diversity attacking the tropical tree Casearia nitida. We also quantified the cascading effects on herbivory, growth and reproduction of this plant species. Plant quality traits (nitrogen and phenolic compounds) were assessed in saplings and reproductive trees. Bottom‐up forces were manipulated by fertilizing plants from both ontogenetic stages. Top‐down forces were manipulated by excluding insectivorous birds from saplings and reproductive trees. Plant ontogeny influenced foliage quality in terms of total phenolics, which were in greater concentration in reproductive trees than in saplings; however, it did not influence bottom‐up forces as modified by fertilization. Bird exclusion increased herbivore density with the same magnitude on both stages. Ontogeny influenced species diversity, which was greater in reproductive trees than in saplings, and also influenced treatment impacts on species richness and diversity. Although top‐down forces increased herbivory equally on plants of each ontogenetic stage, the two stages showed different overcompensation responses to increased damage: caged saplings produced greater leaf biomass than non‐caged saplings, whereas caged trees increased in height proportionally more than non‐caged trees. In sum, plant ontogeny influenced the impact of bird predation on herbivore density, species richness, and species diversity, and the growth variables affected by increased damage in caged plants. We suggest that plant ontogeny can contribute to some extent to the influence of plant quality and the third trophic level on herbivores in this system.  相似文献   

17.
Perennial plants interact with herbivores and pollinators across multiple growing seasons, and thus may respond to herbivores and pollinators both within and across years. Joint effects of herbivores and pollinators influence plant traits, but while some of the potential interactions among herbivory, pollination, plant size, and plant reproductive traits have been well studied, others are poorly understood. This is particularly true for perennial plants where effects of herbivores and pollinators may manifest across years. Here, we describe two experiments addressing the reciprocal interactions of plant traits with herbivore damage and pollination across 2 years using the perennial plant Chamerion angustifolium. We measured (1) plant responses to manipulation of damage and pollination in the year of treatment and the subsequent season, (2) damage and pollination responses to manipulation of plant size and flowering traits in the year of treatment, and (3) plant-mediated indirect interactions between herbivores and pollinators. We found that plant traits had little effect on damage and pollination, but damage and pollination affected plant traits in both the treatment year and the subsequent year. We found evidence of indirect effects between leaf herbivores and pollinators in both directions; indirect effects of pollinators on leaf herbivores have not been previously demonstrated. Our results indicate that pollen receipt results in shorter plants with fewer stems but does not change flower number, while leaf herbivory results in taller plants with fewer flowers. Together, herbivory and pollination may contribute to intermediate plant height and plants with fewer stems and flowers in our system.  相似文献   

18.
Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.  相似文献   

19.
Induced plant responses to herbivory can alter plant quality and influence subsequent interactions with organisms that use that plant as food source. In this study, we conducted several experiments in order to understand whether preference and performance of the cotton aphid, Aphis gossypii (Hem: Aphididae) and the spider mite, Tetranychus urticae (Acari: Tetranychidae) are affected by the previous herbivory of conspecific or heterospecific species on cucumber plants. Longevity, fecundity and pre-imaginal development time were measured as performance criteria. In addition, we explored whether these effects are local or systemic. In the case of performance experiments, the results varied from negative to neutral depending on the performance criteria, no positive effect was observed in studied interactions. Also, depending on performance criteria, the previous herbivory affected the plant systemically, or locally. Results of preference experiments indicated that mites and aphids prefer to settle and produce offspring on control leaf disc to prevent detrimental effects of the previous herbivory. Spider mites showed a stronger preference than aphids in the detection of induced leaf discs, which resulted in more mites being present and laying more egg on control leaf disc in both local and systemic treatments. Performing both preference and performance experiments, not only reveals the effect of herbivores on each other's mediated by the plant but also reveals more information about the sensitivity of herbivores to change in the quality of their host.  相似文献   

20.
Jasmonate-mediated induced plant resistance affects a community of herbivores   总被引:17,自引:0,他引:17  
1. The negative effect of induced plant resistance on the preference and performance of herbivores is a well‐documented ecological phenomenon that is thought to be important for both plants and herbivores. This study links the well‐developed mechanistic understanding of the biochemistry of induced plant resistance in the tomato system with an examination of how these mechanisms affect the community of herbivores in the field. 2. Several proteins that are induced in tomato foliage following herbivore damage have been linked causally to reductions in herbivore performance under laboratory conditions. Application of jasmonic acid, a natural elicitor of these defensive proteins, to tomato foliage stimulates induced responses to herbivory. 3. Jasmonic acid was sprayed on plants in three doses to generate plants with varying levels of induced responses, which were measured as increases in the activities of proteinase inhibitors and polyphenol oxidase. 4. Field experiments conducted over 3 years indicated that induction of these defensive proteins is associated with decreases in the abundance of all four naturally abundant herbivores, including insects in three feeding guilds, caterpillars, flea beetles, aphids, and thrips. Induced resistance killed early instars of noctuid caterpillars. Adult flea beetles strongly preferred control plants over induced plants, and this effect on host plant preference probably contributed to differences in the natural abundance of flea beetles. 5. The general nature of the effects observed in this study suggests that induced resistance will suppress many members of the herbivore community. By linking plant biochemistry, insect preference, performance, and abundance, tools can be developed to manipulate plant resistance sensibly and to predict its outcome under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号