首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The interactions between herbivorous insects and their host plants are expected to be influenced by changing climates. Modern oaks provide an excellent system to examine this assumption because their interactions with herbivores occur over broad climatic and spatial scales, they vary in their defensive and nutritional investment in leaves by being deciduous or evergreen, and their insect herbivores range from generalists to highly specialized feeders. In this study, we surveyed leaf-litter samples of four oak species along an elevation gradient, from coastal northern California, USA, to the upper montane woodlands of the Sierra Nevada, to examine the relationship between climatic factors (mean annual temperature and precipitation) and oak herbivory levels at multiple scales; across all oak species pooled, between evergreen and deciduous species and within species.Overall, temperature and precipitation did not appear to have a significant effect on most measures of total herbivore damage (percent leaves damaged per tree, percent leaf area removed and average number of feeding damage marks per leaf) and the strongest predictor of herbivore damage overall was the identity of the host species. However, increases in precipitation were correlated with an increase in the actual leaf area removed, and specialized insects, such as those that make leaf mines and galls, were the most sensitive to differences in precipitation levels. This suggests that the effects of changing climate on some plant–insect interactions is less likely to result in broad scale increases in damage with increasing temperatures or changing precipitation levels, but is rather more likely to be dependent on the type of herbivore (specialist vs. generalist) and the scale (species vs. community) over which the effect is examined.  相似文献   

2.
Enemy release of introduced plants and variation in herbivore pressure in relation to community diversity are presently discussed as factors that affect plant species invasiveness or habitat invasibility. So far few data are available on this topic and the results are inconclusive. We compared leaf herbivory between native and invasive woody plants on Mahé, the main island of the tropical Seychelles. We further investigated variation in leaf herbivory on three abundant invasive species along an altitudinal gradient (50–550 m a.s.l.). The median percentage of leaves affected by herbivores was significantly higher in native species (50%) than in invasive species (27%). In addition, the species suffering from the highest leaf area loss were native to the Seychelles. These results are consistent with the enemy release hypothesis (ERH). While the invasive species showed significant and mostly consistent variation in the amount of leaf damage between sites, this variation was not related to general altitudinal trends in diversity but rather to local variation in habitat structure and diversity. Our results indicate that in the Seychelles invasive woody plants profit from herbivore release relative to the native species and that the amount of herbivory, and therefore its effect on species invasiveness or habitat invasibility, may be dependent on local community structure and composition.  相似文献   

3.
Diversity patterns of herbivores have been related to climate, host plant traits, host plant distribution and evolutionary relationships individually. However, few studies have assessed the relative contributions of a range of variables to explain these diversity patterns across large geographical and host plant species gradients. Here we assess the relative influence that climate and host plant traits have on endophagous species (leaf miners and plant gallers) diversity across a suite of host species from a genus that is widely distributed and morphologically variable. Forty-six species of Acacia were sampled to encapsulate the diversity of species across four taxonomic sections and a range of habitats along a 950 km climatic gradient: from subtropical forest habitats to semi-arid habitats. Plant traits, climatic variables, leaf miner and plant galler diversity were all quantified on each plant species. In total, 97 leaf mining species and 84 plant galling species were recorded from all host plants. Factors that best explained leaf miner richness across the climatic gradient (using AIC model selection) included specific leaf area (SLA), foliage thickness and mean annual rainfall. The factor that best explained plant galler richness across the climatic gradient was C:N ratio. In terms of the influence of plant and climatic traits on species composition, leaf miner assemblages were best explained by SLA, foliage thickness, mean minimum temperature and mean annual rainfall, whilst plant gall assemblages were explained by C:N ratio, %P, foliage thickness, mean minimum temperature and mean annual rainfall. This work is the first to assess diversity and structure across a broad environmental gradient and a wide range of potential key climatic and plant trait determinants simultaneously. Such methods provide key insights into endophage diversity and provide a solid basis for assessing their responses to a changing climate.  相似文献   

4.
Leaf-cutting ants (LCA) are generalist herbivores capable of causing severe plant damage. Negative impacts of ant herbivory vary according to the density of nests and availability of palatable plants; however, it is not yet clear how these herbivores affect tropical forest restoration sites. To investigate how LCA preference affects plant species performance, we evaluated the herbivory of Atta sexdens rubropilosa on native tree species seedlings in Atlantic Forest restoration sites. We expected pioneer species to suffer higher herbivory by LCA when compared with non-pioneer species and that species with higher damage will have poorer growth and higher mortality. The experiment was conducted in three restoration sites in northern Paraná state, southern Brazil, with 1,500 seedlings of 5 pioneer and 5 non-pioneer species. Sites share similar age, stand size, tree species composition, and LCA nest density. The number of attacks, degree of leaf damage, number of leaves, plant height, and survival were recorded. Specific leaf area, leaf polyphenols, flavonoids, tannins, and nitrogen content were analyzed for each species. Plant damage was similar between pioneer and non-pioneer plant species. This could be explained by trait variability among species in each group and by LCA generalist foraging. Preferred species suffered decreases in growth and survival. Less preferred species suffered fewer ant attacks and no change in performance. Results suggest that ant herbivory can influence plant species establishment and thus species composition in restoration sites by reducing performance and increasing mortality of some, but not all species, making LCA an important ecological filter.  相似文献   

5.
There is often an inverse relationship between the diversity of a plant community and the invasibility of that community by non-native plants. Native herbivores that colonize novel plants may contribute to diversity–invasibility relationships by limiting the relative success of non-native plants. Here, we show that, in large collections of non-native oak trees at sites across the USA, non-native oaks introduced to regions with greater oak species richness accumulated greater leaf damage than in regions with low oak richness. Underlying this trend was the ability of herbivores to exploit non-native plants that were close relatives to their native host. In diverse oak communities, non-native trees were on average more closely related to native trees and received greater leaf damage than those in depauperate oak communities. Because insect herbivores colonize non-native plants that are similar to their native hosts, in communities with greater native plant diversity, non-natives experience greater herbivory.  相似文献   

6.
Many plants support symbiotic microbes, such as endophytic fungi, that can alter interactions with herbivores. Most endophyte research has focused on agronomically important species, with less known about the ecological roles of native endophytes in native plants. In particular, whether genetic variation among endophyte symbionts affects herbivores of plant hosts remains unresolved for most native endophytes. Here, we investigate the importance of native isolates of the endophyte Epichlo? elymi in affecting herbivory of the native grass host, Elymus hystrix. Experimental fungal isolate-plant genotype combinations and endophyte-free control plants were grown in a common garden and exposed to natural arthropod herbivory. Fungal isolates differed in their effects on two types of herbivory, chewing and scraping. Isolates exhibiting greater sexual reproduction were associated with greater herbivore damage than primarily asexual isolates. Endophyte infection also altered patterns of herbivory within plants, with stroma-bearing tillers experiencing up to 30% greater damage than nonstroma-bearing tillers. Results suggest that intraspecific genetic variation in endophytes, like plant genetic variation, can have important 'bottom-up' effects on herbivores in native systems.  相似文献   

7.
Karina Boege 《Oikos》2004,107(3):541-548
Induced changes in plant quality are hypothesized to reduce herbivore numbers and subsequent damage to the plant. The resultant decrease in herbivory may be due to direct negative impacts on herbivores, through the reduction in foliage quality as food, or due to indirect effects of plant-induced traits interacting with the third trophic level, increasing predation and parasitism rates on herbivores. The relative importance of induced responses as direct and/or indirect defenses has not been evaluated in natural systems. Moreover, few studies have evaluated the influence of early-season damage on late-season herbivory in natural systems, particularly in the tropics. The presence of induced responses and subsequent impact on folivory as a consequence of early-season damage were evaluated in three plant species ( Croton pseudoniveus , Bursera instabilis and Piper stipulaceum ) in a tropical dry forest in Mexico. A two-factorial experiment was applied to determine if induced responses influenced subsequent herbivory directly, by reducing foliage quality, or indirectly, through their interaction with parasitoids and predatory arthropods. Plants from all three species with reduced early-season damage had higher herbivory rates through the rest of the growing season, compared to plants that were damaged during leaf expansion. Chemical analyses showed that early-season damage induced the production of total phenolics and condensed tannins for C. pseudoniveus and B. instabilis , respectively. The mechanism by which these compounds affected subsequent herbivory was most likely by directly reducing foliage quality as food for herbivores, given that predatory arthropods and parasitoids had no effects on herbivory in this study. I conclude that early-season damage in these three species influenced later-season herbivory through the induction of plant responses that may act to reduce plant quality as food for herbivores.  相似文献   

8.
Boege  Karina  Dirzo  Rodolfo 《Plant Ecology》2004,175(1):59-69
Based on resource allocation theory, a negative correlation is predicted between resource availability and plant defense against herbivore attack. Plants growing in resource-limited environments should display lower growth and higher defense against herbivores than plants growing where resources are less limited. Interspecific comparisons generally support these predictions. We evaluated this hypothesis at the intraspecific level, for two sapling populations of the canopy tree Dialium guianense (Caesalpiniaceae) at the Lacandona rain forest in southeast Mexico. The two populations occur in nearby sites, adjacent to the Chajul Field Station, under the same climatic conditions and within the same vegetation type, but with considerable differences in soil quality. The Floodplain site, under the influence of the Lacantún River, has favorable conditions for plant growth, in terms of nutrient and water availability, whereas the Hills site, given its location and soil characteristics, provides more restricted conditions for plant growth. Plants in the Floodplain site had higher growth and lower concentration of phenolic compounds than plants in the Hills (a two-fold difference in leaf area production, 1.3 less total phenolics). These differences were correlated with differences in herbivore attack, as saplings from the Hills, with a higher defensive potential, had lower average levels of herbivory than Floodplain plants (3.86% ± 0.80 vs. 7.75% ± 1.43 of leaf area loss). The relationship between the concentration of phenolic compounds and leaf quality for herbivores was consistent with preference assays carried out under laboratory conditions using two species of generalist herbivores, the army worm Spodoptera fugiperda and the native katydid Orophus sp. In 63.8 and 81.3% of the cases, third-instar larvae of S. fugiperda and adults of Orophus, respectively, preferred leaflets from the Floodplain plants population. Moreover, on average, the adults of Orophus consumed 2.9 times more leaf area from the Floodplain than from the Hills. In addition, a reciprocal transplant experiment indicated that phenotypic plasticity is likely to be the mechanism by which the plants expressed differential growth and traits affecting herbivory levels. In this experiment, growth and herbivory levels were 1.6 and 1.7 times higher, respectively, in plants transplanted into a Floodplain experimental plot than those in a Hills plot. This work contributes to our understanding of how edaphic heterogeneity can determine intraspecific variation in the relationship of plants with their herbivores and evaluates the underlying mechanisms promoting such influence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Aims We test the hypothesis that invasive plant species at their range edges experience lower herbivory and allocate less to defense at the edge of an expanding range edge than from more central parts of their distribution, during secondary invasion in a new range. Invasive plants are often able to spread rapidly through new areas. The success of invasive species in new ranges is frequently attributed to enemy release in these new areas and associated evolutionary changes minimizing allocation to defense in favor of growth and reproduction. Enemy release could also explain rapid advances of invasive species upon arriving in new habitats. If invasive species accumulate enemies over time in a new location, then these species may experience a release from their enemies at expanding range fronts. Enemy release at these range fronts may accelerate range expansion.Methods We used populations of four woody invasive species within the invaded range, and four native control species. We quantified leaf herbivory and leaf physical defense traits at both range central and range edge locations, over two 1-month sampling periods, sampled 7 months apart.Important findings Herbivory at the range edge did not differ to the range center but patterns were not consistent across species. There was a trend for lower herbivory at the range edge for Lantana camara, which was reflected in lower leaf toughness. Overall, leaf toughness was greater at the range edge location across invasive and control species. Physical defenses were different among range locations in a few species, though most species show the same trend, suggesting higher herbivory pressures at the range edge location or differences may be due to climatic factors. Leaves of L. camara were significantly less tough at range edges, suggesting that some species can potentially escape their enemies at range edges. However, our results overall do not support the hypothesis that plants at the edge of their ranges experience reduced impact from their enemies.  相似文献   

10.
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.  相似文献   

11.
Host-specificity of folivorous insects in a moist tropical forest   总被引:3,自引:0,他引:3  
1. To assess the degree of herbivore host-specificity in the moist tropical forest on Barro Colourado Island, Panama, I conducted an extensive series of feeding trials on the common insect herbivores from 10 tree species.
2. The herbivores were offered leaves from both congeneric and confamilial plant species to their known host species, as well as leaves from the most abundant tree species in the forest.
3. The amount of damage caused by these herbivores to young, expanding leaves was also measured on nine of the tree species.
4. Of 46 herbivores species (seven Coleoptera, one Orthoptera, 38 Lepidoptera), 26% were specialized to a single plant species, 22% were limited to feeding on a single genus and 37% were able to feed on several genera within a single family. The remaining 15% were generalists, able to feed from several different plant families.
5. The causes of leaf damage varied extensively across the tree species. On average, specialist herbivores caused 58% of the damage to young leaves, generalists herbivores 8% and fungal pathogens 34%. For four of the tree species, pathogens were the most important cause of leaf damage.
6. In this forest, most chewing herbivores appear to have fairly narrow diets, and these specialists are responsible for most of the insect herbivory.  相似文献   

12.
Abstract The enemy release hypothesis predicts that native herbivores will either prefer or cause more damage to native than introduced plant species. We tested this using preference and performance experiments in the laboratory and surveys of leaf damage caused by the magpie moth Nyctemera amica on a co‐occuring native and introduced species of fireweed (Senecio) in eastern Australia. In the laboratory, ovipositing females and feeding larvae preferred the native S. pinnatifolius over the introduced S. madagascariensis. Larvae performed equally well on foliage of S. pinnatifolius and S. madagascariensis: pupal weights did not differ between insects reared on the two species, but growth rates were significantly faster on S. pinnatifolius. In the field, foliage damage was significantly greater on native S. pinnatifolius than introduced S. madagascariensis. These results support the enemy release hypothesis, and suggest that the failure of native consumers to switch to introduced species contributes to their invasive success. Both plant species experienced reduced, rather than increased, levels of herbivory when growing in mixed populations, as opposed to pure stands in the field; thus, there was no evidence that apparent competition occurred.  相似文献   

13.
Invasive species may be released from consumption by their native herbivores in novel habitats and thereby experience higher fitness relative to native species. However, few studies have examined release from herbivory as a mechanism of invasion in oceanic island systems, which have experienced particularly high loss of native species due to the invasion of non-native animal and plant species. We surveyed putative defensive traits and leaf damage rates in 19 pairs of taxonomically related invasive and native species in Hawaii, representing a broad taxonomic diversity. Leaf damage by insects and pathogens was monitored in both wet and dry seasons. We found that native species had higher leaf damage rates than invasive species, but only during the dry season. However, damage rates across native and invasive species averaged only 2% of leaf area. Native species generally displayed high levels of structural defense (leaf toughness and leaf thickness, but not leaf trichome density) while native and invasive species displayed similar levels of chemical defenses (total phenolics). A defense index, which integrated all putative defense traits, was significantly higher for native species, suggesting that native species may allocate fewer resources to growth and reproduction than do invasive species. Thus, our data support the idea that invasive species allocate fewer resources to defense traits, allowing them to outperform native species through increased growth and reproduction. While strong impacts of herbivores on invasion are not supported by the low damage rates we observed on mature plants, population-level studies that monitor how herbivores influence recruitment, mortality, and competitive outcomes are needed to accurately address how herbivores influence invasion in Hawaii.  相似文献   

14.
Herbivory rates are generally thought to be higher in tropical than in temperate forests. Nevertheless, tests of this biogeographic prediction by comparing a single plant species across a tropical-temperate range are scarce. Here, we compare herbivore damage between subtropical and temperate populations of the evergreen tree Aextoxicon punctatum (Olivillo), distributed between 30° and 43° S along the Pacific margin of Chile. To assess the impact of herbivory on Olivillo seedlings, we set up 29 experimental plots, 1.5 × 3 m: 16 in forests of Fray Jorge National Park (subtropical latitude), and 13 in Guabún, Chiloé Island (temperate latitude). Half of each plot was fenced around with chicken wire, to exclude small mammals, and the other half was left unfenced. In each half of the plots we planted 16 seedlings of Olivillo in December 2003, with a total of 928 plants. Seedling survival, leaf production and herbivory by invertebrates were monitored over the next 16 mo. Small mammal herbivores killed ca 30 percent of seedlings in both sites. Nevertheless, invertebrate herbivory was greater in the temperate forest, thus contradicting the expected trend of increasing herbivore impact toward the tropics. Seedling growth was greater in subtropical forest suggesting better conditions for tree growth or that higher invertebrate herbivory depressed seedling growth in the temperate forest. Invertebrate herbivory increased toward temperate latitudes while small mammal herbivory was similar in both sites. We suggest that comparison of single species can be useful to test generalizations about latitudinal patterns and allow disentangling factors controlling herbivory patterns across communities.  相似文献   

15.
Climate change will have profound impacts on the distribution, abundance and ecology of all species. We used a multi-species transplant experiment to investigate the potential effects of a warmer climate on insect community composition and structure. Eight native Australian plant species were transplanted into sites approximately 2.5°C (mean annual temperature) warmer than their native range. Subsequent insect colonisation was monitored for 12 months. We compared the insect communities on transplanted host plants at the warmer sites with control plants transplanted within the species'' native range. Comparisons of the insect communities were also made among transplanted plants at warmer sites and congeneric plant species native to the warmer transplant area. We found that the morphospecies composition of the colonising Coleoptera and Hemiptera communities differed markedly between transplants at the control compared to the warmer sites. Community structure, as described by the distribution of feeding guilds, was also found to be different between the controls and transplants when the entire Coleoptera and Hemiptera community, including non-herbivore feeding guilds, was considered. However, the structure of the herbivorous insect community showed a higher level of consistency between plants at control and warm sites. There were marked differences in community composition and feeding guild structure, for both herbivores and non-herbivores, between transplants and congenerics at the warm sites. These results suggest that as the climate warms, considerable turnover in the composition of insect communities may occur, but insect herbivore communities may retain elements of their present-day structure.  相似文献   

16.
Siemann E  Rogers WE 《Oecologia》2003,135(3):451-457
Invasive plants are often larger in their introduced range compared to their native range. This may reflect an evolved reduction in defense and increase in growth in response to low herbivory in their introduced range. Key elements of this scenario include genetic differences in defense and growth yet uniformly low rates of herbivory in the field that dissociate defense and herbivore damage for alien species. We conducted a laboratory experiment with Melanoplus angustipennis grasshoppers and Chinese Tallow Tree seedlings ( Sapium sebiferum) from its native range (China) and its introduced range (Texas, USA) where it is invasive. We caged grasshoppers with pairs of Sapium seedlings from the same continent or different continents. The amounts of leaf area removed from Texas and China seedlings, and their height growth rates, were indistinguishable when both seedlings in the pair were from the same continent. However, when grasshoppers had a choice between seedlings from different continents, they removed more Texas Sapium foliage than China Sapium foliage and height growth rates were higher for China Sapium seedlings compared to Texas seedlings. Grasshopper growth rates increased with greater Sapium foliage consumption. In a common garden in Texas, Sapium seedlings from Texas grew 40% faster than those from China. Chewing insect herbivores removed little Sapium foliage in the field experiment. Although grasshoppers preferred to feed on Texas Sapium when offered a choice in the laboratory, extremely low herbivory levels in the field may have allowed the Texas seedlings to outperform the China seedlings in the common garden. These results demonstrate post-invasion genetic differences in herbivore resistance and growth of an invasive plant species together with a decoupling of defense and herbivore choice in the introduced range.  相似文献   

17.
Understanding plant response to herbivory facilitates the prioritisation of guilds of specialist herbivores as biological control agents based on their potential impacts. Prickly acacia ( Acacia nilotica ssp. indica ) is a weed of national significance in Australia and is a target for biological control. Information on the susceptibility of prickly acacia to herbivory is limited, and there is no information available on the plant organ (i.e. leaf, shoot and root in isolation or in combination) most susceptible to herbivory. We evaluated the ability of prickly acacia seedlings, to respond to different types of simulated herbivory (defoliation, shoot damage, root damage and combinations), at varying frequencies (no herbivory, single, two and three events of herbivory) to identify the type and frequency of herbivory that will be required to reduce the growth and vigour. Defoliation and shoot damage, individually, had a significant negative impact on prickly acacia seedlings. For the defoliation to be effective, more than two defoliation events were required, whereas a single bout of shoot damage was enough to cause a significant reduction in plant vigour. A combination of defoliation + shoot damage had the greatest negative impact. The study highlights the need to prioritise specialist leaf and shoot herbivores as potential biological control agents for prickly acacia.  相似文献   

18.
Herbivory has been long considered an important component of plant-animal interactions that influences the success of invasive species in novel habitats. One of the most important hypotheses linking herbivory and invasion processes is the enemy-release hypothesis, in which exotic plants are hypothesized to suffer less herbivory and fitness-costs in their novel ranges as they leave behind their enemies in the original range. Most evidence, however, comes from studies on leaf herbivory, and the importance of flower herbivory for the invasion process remains largely unknown. Here we present the results of a meta-analysis of the impact of flower herbivory on plant reproductive success, using as moderators the type of damage caused by floral herbivores and the residence status of the plant species. We found 51 papers that fulfilled our criteria. We also included 60 records from unpublished data of the laboratory, gathering a total of 143 case studies. The effects of florivory and nectar robbing were both negative on plant fitness. The methodology employed in studies of flower herbivory influenced substantially the outcome of flower damage. Experiments using natural herbivory imposed a higher fitness cost than simulated herbivory, such as clipping and petal removal, indicating that studies using artificial herbivory as surrogates of natural herbivory underestimate the real fitness impact of flower herbivory. Although the fitness cost of floral herbivory was high both in native and exotic plant species, floral herbivores had a three-fold stronger fitness impact on exotic than native plants, contravening a critical element of the enemy-release hypothesis. Our results suggest a critical but largely unrecognized role of floral herbivores in preventing the spread of introduced species into newly colonized areas.  相似文献   

19.
The invasive shrub Buddleja davidii performs better in its introduced range   总被引:1,自引:1,他引:0  
It is commonly assumed that invasive plants grow more vigorously in their introduced than in their native range, which is then attributed to release from natural enemies or to microevolutionary changes, or both. However, few studies have tested this assumption by comparing the performance of invasive species in their native vs. introduced ranges. Here, we studied abundance, growth, reproduction, and herbivory in 10 native Chinese and 10 invasive German populations of the invasive shrub Buddleja davidii (Scrophulariaceae; butterfly bush). We found strong evidence for increased plant vigour in the introduced range: plants in invasive populations were significantly taller and had thicker stems, larger inflorescences, and heavier seeds than plants in native populations. These differences in plant performance could not be explained by a more benign climate in the introduced range. Since leaf herbivory was substantially reduced in invasive populations, our data rather suggest that escape from natural enemies, associated with increased plant growth and reproduction, contributes to the invasion success of B. davidii in Central Europe.  相似文献   

20.
Aim Theory suggests that introduced species that are phylogenetically distant from their recipient communities should be more successful than closely related introduced species because they can exploit open niches and escape enemies in their new range, i.e. Darwin’s Naturalization Hypothesis. Alternatively, it has also been hypothesized that closely related invaders might be more successful than novel invaders because they are pre‐adapted to conditions in their new range; a paradox coined Darwin’s Naturalization Conundrum. To date, these hypotheses have been tested primarily at the regional scale, not within local plant communities where introduced species colonize, compete and encounter herbivores. Location Global. Methods and Results We used community phylogenetics to analyse data from 49 published experiments to examine the importance of phylogenetic relatedness and generalist herbivory on native and exotic plant success at the community level. Plants that were categorized as ‘invasive’ were indeed less related to the recipient community than ‘non‐pest’ exotic plants. Distantly related exotic plants were also more abundant than closely related species. Phylogenetic relatedness predicted herbivore impact, but in a way that was opposite to predictions, as herbivores had stronger, not lesser, impacts on distantly related plants. Importantly, these same patterns generally held for native plants, as distantly related native plants were more abundant and more susceptible to herbivores than closely related species, ultimately resulting in herbivores suppressing community‐level phylogenetic diversity. Main conclusions Distantly related plants were more locally successful despite experiencing stronger control by generalist herbivores, a finding that was robust across native and exotic species. To our knowledge, this is the first evidence that phylogenetic matching influences the local success of both native and exotic species and that herbivores can influence community phylodiversity. Phylogenetic relatedness explained a relatively small portion of the variance in the data even after taking herbivory into account, however, suggesting that phylogenetic matching works in combination with other factors to influence community assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号