首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A genetic linkage map consisting of 399 RFLP-defined loci was generated from a cross between resynthesized Brassica napus (an interspecific B. rapa x B. oleracea hybrid) and "natural" oilseed rape. The majority of loci exhibited disomic inheritance of parental alleles demonstrating that B. rapa chromosomes were each pairing exclusively with recognisable A-genome homologues in B. napus and that B. oleracea chromosomes were pairing similarly with C-genome homologues. This behaviour identified the 10 A genome and 9 C genome linkage groups of B. napus and demonstrated that the nuclear genomes of B. napus, B. rapa, and B. oleracea have remained essentially unaltered since the formation of the amphidiploid species, B. napus. A range of unusual marker patterns, which could be explained by aneuploidy and nonreciprocal translocations, were observed in the mapping population. These chromosome abnormalities were probably caused by associations between homoeologous chromosomes at meiosis in the resynthesized parent and the F1 plant leading to nondisjunction and homoeologous recombination.  相似文献   

2.
Howell EC  Kearsey MJ  Jones GH  King GJ  Armstrong SJ 《Genetics》2008,180(4):1849-1857
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.  相似文献   

3.
I A Parkin  D J Lydiate 《Génome》1997,40(4):496-504
The patterns of chromosome pairing and recombination in two contrasting Brassica napus F1 hybrids were deduced. One hybrid was from a winter oilseed rape (WOSR) x spring oilseed rape cross, the other from a resynthesized B. napus x WOSR cross. Segregation at 211 equivalent loci assayed in the population derived from each hybrid produced two collinear genetic maps. Alignment of the maps indicated that B. napus chromosomes behaved reproducibly as 19 homologous pairs and that the 19 distinct chromosomes of B. napus each recombined with unique chromosomes from the interspecific hybrid between Brassica rapa and Brassica oleracea. This result indicated that the genomes of the diploid progenitors of amphidiploid B. napus have remained essentially unaltered since the formation of the species and that the progenitor genomes were similar to those of modern-day B. rapa and B. oleracea. The frequency and distribution of crossovers were almost indistinguishable in the two populations, suggesting that the recombination machinery of B. napus could cope easily with different degrees of genetic divergence between homologous chromosomes. Efficient recombination in wide crosses will facilitate the introgression of novel alleles into oilseed rape from B. rapa and B. oleracea (via resynthesized B. napus) and reduce linkage drag.  相似文献   

4.
The aim of this work was to find C genome specific repetitive DNA sequences able to differentiate the homeologous A (B. rapa) and C (B. oleracea) genomes of Brassica, in order to assist in the physical identification of B. napus chromosomes. A repetitive sequence (pBo1.6) highly enriched in the C genome of Brassica was cloned from B. oleracea and its chromosomal organisation was investigated through fluorescent in situ hybridisation (FISH) in B. oleracea (2n = 18, CC), B. rapa (2n = 20, AA) and B. napus (2n = 38, AACC) genomes. The sequence was 203 bp long with a GC content of 48.3%. It showed up to 89% sequence identity with telomere-like DNA from many plant species. This repeat was clearly underrepresented in the A genome and the in situ hybridisation showed its B. oleracea specificity at the chromosomal level. Sequence pBo1.6 was localised at interstitial and/or telomeric/subtelomeric regions of all chromosomes from B. oleracea, whereas in B. rapa no signal was detected in most of the cells. In B. napus 18 to 24 chromosomes hybridised with pBo1.6. The discovery of a sequence highly enriched in the C genome of Brassica opens the opportunity for detailed studies regarding the subsequent evolution of DNA sequences in polyploid genomes. Moreover, pBo1.6 may be useful for the determination of the chromosomal location of transgenic DNA in genetically modified oilseed rape.  相似文献   

5.
Jackson SA  Cheng Z  Wang ML  Goodman HM  Jiang J 《Genetics》2000,156(2):833-838
Comparative genome studies are important contributors to our understanding of genome evolution. Most comparative genome studies in plants have been based on genetic mapping of homologous DNA loci in different genomes. Large-scale comparative physical mapping has been hindered by the lack of efficient and affordable techniques. We report here the adaptation of fluorescence in situ hybridization (FISH) techniques for comparative physical mapping between Arabidopsis thaliana and Brassica rapa. A set of six bacterial artificial chromosomes (BACs) representing a 431-kb contiguous region of chromosome 2 of A. thaliana was mapped on both chromosomes and DNA fibers of B. rapa. This DNA fragment has a single location in the A. thaliana genome, but hybridized to four to six B. rapa chromosomes, indicating multiple duplications in the B. rapa genome. The sizes of the fiber-FISH signals from the same BACs were not longer in B. rapa than those in A. thaliana, suggesting that this genomic region is duplicated but not expanded in the B. rapa genome. The comparative fiber-FISH mapping results support that chromosomal duplications, rather than regional expansion due to accumulation of repetitive sequences in the intergenic regions, played the major role in the evolution of the B. rapa genome.  相似文献   

6.
Moricandia is the only genus with C3-C4 species within the family of Cruciferae. To provide the basic information of transferring C3-C4 and other important characteristics from Moricandia to Brassica crops, the relationships between Moricandia and Brassica species were studied based on crossability and RFLP fingerprinting. The crossability was very low between the two genera in the experiment. There was no hybrid seed obtained between M. arvensis and B. rapa though 8 000 flowers were crossed. 2 989 cross-pollinated ovaries were cultured and also no hybrid embryo was developed. However, four intergeneric hybrid shoots were generated from 105 cultured ovaries in the combination of M. arvensis x B. napus. The nucleus DNA polymorphism of restriction loci was detected with 23 genic DNA clones of B. napus for the samples of B. napus, B. rapa and B. oleracea, M. arvensis and M. nit, ns. A high homology was found between Moricandia and Brassica species. The similarity between M. nitens and B. rapa was even greater than that between B. rapa and B. napus. The close relationships between Moricandia species and Brassica crops, especially European B. rapa, were also detected with 4 beta mitochondria probes. The intensive homology between Moricandia C3-C4 species and Brassica crops evaluated with the RFLP markers revealed the possibility of transferring some important genes from the C3-C4 species to the domesticated species by sexual hybridization or protoplast fusion followed by recombination of homoeologous chromosomes.  相似文献   

7.
Cui C  Ge X  Gautam M  Kang L  Li Z 《Genetics》2012,191(3):725-738
Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids.  相似文献   

8.
Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.  相似文献   

9.
A RFLP map of Brassica napus, consisting of 277 loci arranged in 19 linkage groups, was produced from genetic segregation in a combined population of 174 doubled-haploid microspore-derived lines. The integration of this map with a B. napus map derived from a resynthesized B. napus x oilseed rape cross allowed the 10 linkage groups of the B. napus A genome and the 9 linkage groups of the C genome to be identified. Collinear patterns of marker loci on different linkage groups suggested potential partial homoeologues. RFLP patterns consistent with aberrant chromosomes were observed in 9 of the 174 doubled-haploid lines. At least 4 of these lines carried nonreciprocal, homoeologous translocations. These translocations were probably the result of homoeologous recombination in the amphidiploid genome of oilseed rape, suggesting that domesticated B. napus is unable to control chromosome pairing completely. Evidence for genome homogenization in oilseed rape is presented and its implications on genetic mapping in amphidiploid species is discussed. The level of polymorphism in the A genome was higher than that in the C genome and this might be a general property of oilseed rape crosses.  相似文献   

10.
R J Snowdon  W K?hler  A K?hler 《Génome》1997,40(4):582-587
Using fluorescence in situ hybridization, we located ribosomal DNA loci on prometaphase chromosomes of the diploid species Brassica rapa and Brassica oleracea and their amphidiploid Brassica napus. Based on comparisons of chromosome morphology and hybridization patterns, we characterized the individual B. napus rDNA loci according to their presumed origins in the Brassica A and C genomes. As reported in other studies, the sum of rDNA loci observed on B. rapa (AA genome) and B. oleracea (CC genome) chromosomes was one greater than the total number of loci seen in their amphidiploid B. napus (AACC). Evidence is presented that this reduction in B. napus rDNA locus number results from the loss of the smallest A genome rDNA site in the amphidiploid.  相似文献   

11.
The cultivated Brassica species are the group of crops most closely related to Arabidopsis thaliana (Arabidopsis). They represent models for the application in crops of genomic information gained in Arabidopsis and provide an opportunity for the investigation of polyploid genome formation and evolution. The scientific literature contains contradictory evidence for the dynamics of the evolution of polyploid genomes. We aimed at overcoming the inherent complexity of Brassica genomes and clarify the effects of polyploidy on the evolution of genome microstructure in specific segments of the genome. To do this, we have constructed bacterial artificial chromosome (BAC) libraries from genomic DNA of B. rapa subspecies trilocularis (JBr) and B. napus var Tapidor (JBnB) to supplement an existing BAC library from B. oleracea. These allowed us to analyse both recent polyploidization (under 10,000 years in B. napus) and more ancient polyploidization events (ca. 20 Myr for B. rapa and B. oleracea relative to Arabidopsis), with an analysis of the events occurring on an intermediate time scale (over the ca. 4 Myr since the divergence of the B. rapa and B. oleracea lineages). Using the Arabidopsis genome sequence and clones from the JBr library, we have analysed aspects of gene conservation and microsynteny between six regions of the genome of B. rapa with the homoeologous regions of the genomes of B. oleracea and Arabidopsis. Extensive divergence of gene content was observed between the B. rapa paralogous segments and their homoeologous segments within the genome of Arabidopsis. A pattern of interspersed gene loss was identified that is similar, but not identical, to that observed in B. oleracea. The conserved genes show highly conserved collinearity with their orthologues across genomes, but a small number of species-specific rearrangements were identified. Thus the evolution of genome microstructure is an ongoing process. Brassica napus is a recently formed polyploid resulting from the hybridization of B. rapa (containing the Brassica A genome) and B. oleracea (containing the Brassica C genome). Using clones from the JBnB library, we have analysed the microstructure of the corresponding segments of the B. napus genome. The results show that there has been little or no change to the microstructure of the analysed segments of the Brassica A and C genomes as a consequence of the hybridization event forming natural B. napus. The observations indicate that, upon polyploid formation, these segments of the genome did not undergo a burst of evolution discernible at the scale of microstructure.  相似文献   

12.
Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an allopolyploid, resulting from natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), both being diploid species derived from a common ancestor. To study the relationships between genomes of these Brassica species, we have determined simultaneously the pairing and recombination pattern of A and C chromosomes during meiosis of AAC triploid hybrids, which result from the interspecific cross between natural B. napus and B. rapa. Different AAC triploid hybrids and their progenies have been analysed using cytogenetic, BAC-FISH, and molecular techniques. In 71% of the pollen mother cells, homologous A chromosomes paired regularly, and usually one chromosome of each pair was transmitted to the progeny. C chromosomes remained mainly univalent, but were involved in homoeologous pairing in 21.5% of the cells, and 13% of the transmitted C chromosomes were either recombined or broken. The rate of transmission of C chromosomes depended on the identity of the particular chromosome and on the way the hybrid was crossed, as the male or as the female parent, to B. napus or to B. rapa. Gene transfers in triploid hybrids are favoured between A genomes of B. rapa and B. napus, but also occur between A and C genomes though at lower rates.  相似文献   

13.
The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.  相似文献   

14.
We constructed a high-density Brassica rapa integrated linkage map by combining a reference genetic map of 78 doubled haploid lines derived from Chiifu-401-42?× Kenshin (CKDH) and a new map of 190 F2 lines derived from Chiifu-401-42?× rapid cycling B. rapa (CRF2). The integrated map contains 1017 markers and covers 1262.0 cM of the B. rapa genome, with an average interlocus distance of 1.24 cM. High similarity of marker order and position was observed among the linkage groups of the maps with few short-distance inversions. In total, 155 simple sequence repeat (SSR) markers, anchored to 102 new bacterial artificial chromosomes (BACs) and 146 intron polymorphic (IP) markers were mapped in the integrated map, which would be helpful to align the sequenced BACs in the ongoing multinational Brassica rapa Genome Sequencing Project (BrGSP). Further, comparison of the B. rapa consensus map with the 10 B. juncea A-genome linkage groups by using 98 common IP markers showed high-degree colinearity between the A-genome linkage groups, except for few markers showing inversion or translocation. Suggesting that chromosomes are highly conserved between these Brassica species, although they evolved independently after divergence. The sequence information coming out of BrGSP would be useful for B. juncea breeding. and the identified Arabidopsis chromosomal blocks and known quantitative trait loci (QTL) information of B. juncea could be applied to improve other Brassica crops including B. rapa.  相似文献   

15.
Min Liu  Zai-Yun Li 《Génome》2007,50(11):985-993
In distant hybridization of plants, nonclassical hybrids with unexpected chromosome complements, chromosome elimination, and genetic introgression have been well documented. We obtained intergeneric hybrids between Brassica rapa, B. rapa var. chinensis, and another cruciferous species, Orychophragmus violaceus, following embryo rescue. Hybrids mainly displayed phenotypes of B. rapa, although certain O. violaceus or novel characteristics also appeared. Variable numbers of chromosomes were observed in somatic cells in the roots of plantlets on medium and in ovaries and pollen mother cells (PMCs). However, higher numbers were recorded in the roots. GISH revealed that the majority of ovary cells and PMCs contained 20 chromosomes of B. rapa with or without individual O. violaceus chromosomes or fragments added or introgressed. AFLP analysis showed that fragments deleted from the B. rapa genome were much more frequent than novel and O. violaceus fragments. The mechanisms involved genome doubling and successive elimination of O. violaceus chromosomes accompanied by fragment recombination and introgression, producing B. rapa-type plants with modified genetic constitutions and phenotypes.  相似文献   

16.
Many previous studies have provided evidence for genome changes in polyploids, but there are little data on the overall population dynamics of genome change and whether it causes phenotypic variability. We analyzed genetic, epigenetic, gene expression, and phenotypic changes in approximately 50 resynthesized Brassica napus lines independently derived by hybridizing double haploids of Brassica oleracea and Brassica rapa. A previous analysis of the first generation (S0) found that genetic changes were rare, and cytosine methylation changes were frequent. Our analysis of a later generation found that most S0 methylation changes remained fixed in their S5 progeny, although there were some reversions and new methylation changes. Genetic changes were much more frequent in the S5 generation, occurring in every line with lines normally distributed for number of changes. Genetic changes were detected on 36 of the 38 chromosomes of the S5 allopolyploids and were not random across the genome. DNA fragment losses within lines often occurred at linked marker loci, and most fragment losses co-occurred with intensification of signal from homoeologous markers, indicating that the changes were due to homoeologous nonreciprocal transpositions (HNRTs). HNRTs between chromosomes A1 and C1 initiated in early generations, occurred in successive generations, and segregated, consistent with a recombination mechanism. HNRTs and deletions were correlated with qualitative changes in the expression of specific homoeologous genes and anonymous cDNA amplified fragment length polymorphisms and with phenotypic variation among S5 polyploids. Our data indicate that exchanges among homoeologous chromosomes are a major mechanism creating novel allele combinations and phenotypic variation in newly formed B. napus polyploids.  相似文献   

17.
W K Heneen  R B J?rgensen 《Génome》2001,44(6):1007-1021
Progeny plants from Brassica rapa-alboglabra aneuploids were characterized genetically by scoring random amplified polymorphic DNA (RAPD) markers and seed colour and cytologically as to chromosome number and pairing. Sets of RAPD markers specific for each of the encountered eight alien Brassica alboglabra chromosomes were defined. The finding of subsets of markers associated with the presence or absence of alien chromosomes inferred the frequent occurrence of intergenomic genetic recombination and introgression. The chromosome numbers were in the range 2n = 20-28, with a maximum of seven alien B. alboglabra chromosomes and one trisomic B. rapa chromosome. Five types of monosomic addition lines were obtained, two of which have not been developed before. Differences in chromatin condensation patterns made it possible to differentiate between the B. rapa and B. alboglabra chromosomes at diakinesis, and to detect intergenomic homoeological pairing. In addition to the frequent formation of trivalents by homoeologous pairing of an alien B. alboglabra chromosome and a background B. rapa pair, occasional heteromorphic intergenomic bivalents and B. rapa univalents were encountered. Homoeological intergenomic pairing occurred between chromosomes with similar centromeric and karyotypic positions. Plants with structurally changed alien chromosomes were found. The RAPD and cytological data substantiated each other. Observations of the colour of sown and harvested seeds indicated that B. alboglabra chromosome 4 carries a gene for brown seed colour. It exerts its control embryonically, and thus it differs from chromosome 1 which controls seed colour maternally.  相似文献   

18.
The three diploid (B. nigra, B. oleracea, B. campestris) and three allotetraploid (B. carinata, B. juncea, B. napus) species of Brassica, known as the "U-triangle" are one of the best model systems for the study of polyploidy. Numerous molecular investigations have provided a wealth of new insights into the polyploid origin and changes during the evolution of Brassica, but there are still many controversial aspects of their relationship and evolution. Interpretation of genome changes during evolution requires individual chromosome identification within the genome and clear distinction of genomes within the allotetraploid. The aim of this study was to identify individual chromosomes of B. juncea (genome AABB; 2n = 4x = 36) and to determine their genomic origin. Fluorescence in situ hybridization with 5S and 45S rDNA probes enabled discrimination of a substantial number of chromosomes, providing chromosomal landmarks for 20 out of 36 chromosomes of B. juncea. Additionally, along with double target genomic in situ hybridization, it allowed assignment of all chromosomes to either the A or B genomes.  相似文献   

19.
Chromosomal rearrangements can be triggered by recombination between distinct but related regions. Brassica napus (AACC; 2n = 38) is a recent allopolyploid species whose progenitor genomes are widely replicated. In this article, we analyze the extent to which chromosomal rearrangements originate from homeologous recombination during meiosis of haploid B. napus (n = 19) by genotyping progenies of haploid x euploid B. napus with molecular markers. Our study focuses on three pairs of homeologous regions selected for their differing levels of divergence (N1/N11, N3/N13, and N9/N18). We show that a high number of chromosomal rearrangements occur during meiosis of B. napus haploid and are transmitted by first division restitution (FDR)-like unreduced gametes to their progeny; half of the progeny of Darmor-bzh haploids display duplications and/or losses in the chromosomal regions being studied. We demonstrate that half of these rearrangements are due to recombination between regions of primary homeology, which represents a 10- to 100-fold increase compared to the frequency of homeologous recombination measured in euploid lines. Some of the other rearrangements certainly result from recombination between paralogous regions because we observed an average of one to two autosyndetic A-A and/or C-C bivalents at metaphase I of the B. napus haploid. These results are discussed in the context of genome evolution of B. napus.  相似文献   

20.
Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completion of several key hallmarks of meiosis in Brassica napus (AACC), a young polyphyletic allotetraploid crop species with closely related homoeologous chromosomes. Altogether, our results demonstrate a precocious and efficient sorting of homologous versus homoeologous chromosomes during early prophase I in two representative B. napus accessions that otherwise show a genotypic difference in the progression of homologous recombination. More strikingly, our detailed comparison of meiosis in near isogenic allohaploid and euploid plants showed that the mechanism(s) promoting efficient chromosome sorting in euploids is adjusted to promote crossover formation between homoeologs in allohaploids. This suggests that, in contrast to other polyploid species, chromosome sorting is context dependent in B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号