首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

2.
The effect of agitation and aeration on the growth and antibiotic production by Xenorhabdus nematophila YL001 grown in batch cultures were investigated. Efficiency of aeration and agitation was evaluated through the oxygen mass transfer coefficient (K L a). With increase in K L a, the biomass and antibiotic activity increased. Activity units of antibiotic and dry cell weight were increased to 232 U ml−1 and 19.58 g l−1, respectively, productivity in cell and antibiotic was up more than 30% when K L a increased from 115.9 h−1 to 185.7 h−1. During the exponential growth phase, DO concentration was zero, the oxygen supply was not sufficient. So, based on process analysis, a three-stage oxygen supply control strategy was used to improved the DO concentration above 30% by controlling the agitation speed and aeration rate. The dry cell weight and activity units of antibiotic were further increased to 24.22 g l−1 and 249 U ml−1, and were improved by 24.0% and 7.0%, compared with fermentation at a constant agitation speed and a constant aeration rate (300 rev min−1, 2.5 l min−1).  相似文献   

3.
By using our previously optimized media and a fed-batch operation controlled by LabVIEW Software, the key parameter for a high production of alkaline protease using the marine bacterium, Teredinobacter turnirae, was to maintain a low concentration of C and N-sources ( < 2 g sucrose l−1 and < 0.2 g NH4C l l−1) using an appropriate fed-batch culture system. A maximum protease activity of 8250 U ml−1 was thus achieved.  相似文献   

4.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

5.
Recombinant hG-CSF was expressed in Pichia pastoris under the control of the AOX1 promoter. In this study, the glycerol feeding rate was adjusted to achieve the maximum attainable specific growth rate before induction. Using a two-stage glycerol feeding method, the specific growth rate was changed from a maximum value of 0.21 h−1 (at the beginning of feeding) to 0.15 h−1 prior to induction. With this approach, the final dry cell wt and rhG-CSF yield achieved was close to 120 g l−1 and 320 mg l−1, respectively. Our study found that the two-stage feeding method allowed the overall productivity of rhG-CSF to increase 2.9 times that of the conventional fed-batch method.  相似文献   

6.
The mycelia of Aspergillus niger, cultivated in a medium containing 45 g l−1 maltose, 66 g l−1 yeast extract, and 5 g l−1 K2HPO4 at 30°C and 200 rpm, were used as a biocatalyst in the glucosylation of ascorbic acid. Free mycelia from 3-day-old culture, when used in a 6-h reaction with maltose as the acyl donor, gave 16.07 g l−1 ascorbic acid glucoside corresponding to a volumetric productivity of 2.68 g l−1 h−1 and a conversion of 67%. Mycelia from 3-day-old cultures were entrapped in calcium alginate beads and used as a catalyst in the glucosylation of ascorbic acid. An ascorbic acid-to-maltose molar ratio of 1:9 was found to be optimum, and the conversion reached 75% after 12 h. The concentration of ascorbic acid glucoside produced at this molar ratio was 17.95 g l−1, and the productivity was 1.5 g l−1 h−1. The biocatalyst was repeatedly used in a fixed bed bioreactor for the synthesis of ascorbic acid glucoside and approximately 17 g l−1 of ascorbic acid glucoside corresponding to a volumetric productivity of 1.42 g l−1 h−1 was produced in each use. The conversion was retained at 70% in each use. The entrapped mycelia also exhibited exceptionally high reusability and storage stability. The product was purified to 85% by anion exchange and gel permeation chromatography with a final yield of 75%.  相似文献   

7.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

8.
Excretion of 1,3-propanediol (1,3-PD) by K. pneumoniae was compared in ammonium- and phosphate-limited chemostat cultures running with an excess of glycerol. 59 and 43% catabolic flux were directed to 1,3-PD in ammonia-limited cultures and phosphate-limited cultures at dilution rate of 0.1 h−1, respectively. Ammonia-limited fed-batch cultures produced 61 g 1,3-PD l−1 and a total of 15 g l−1 organic acid in 36 h. However, phosphate-limited fed-batch cultures excreted 61 g lactate l−1 and 44 g 1,3-PD l−1.  相似文献   

9.
The constant-rate fed-batch production of the polygalacturonic acid bioflocculant REA-11 was studied. A controlled sucrose-feeding strategy resulted in a slight improvement in biomass and a 7% reduction in flocculating activity compared with the batch process. When fed with a 3 g l−1 urea solution, the flocculating activity was enhanced to 720 U ml−1 in 36 h. High cell density (2.12 g l−1) and flocculating activity (820 U ml−1) were obtained in a 10-l fermentor by feeding with a sucrose-urea solution, with values of nearly two times and 50% higher than those of the batch process, respectively. Moreover, the residual sucrose declined to 2.4 g l−1, and residual urea decreased to 0.03 g l−1. Even higher flocculating activity of 920 U ml−1 and biomass of 3.26 g l−1 were obtained by feeding with a sucrose-urea solution in a pilot scale fermentation process, indicating the potential industrial utility of this constant-rate feeding strategy in bioflocculant production by Corynebacterium glutamicum.  相似文献   

10.
Poly(3-hydroxybutyrate) (PHB) synthesis was analyzed under microaerobic conditions in a recombinant Escherichia coli arcA mutant using glycerol as the main carbon source. The effect of several additives was assessed in a semi-synthetic medium by the ‘one-factor-at-a-time’ technique. Casein amino acids (CAS) concentration was an important factor influencing both growth and PHB accumulation. Three factors exerting a statistically significant influence on PHB synthesis were selected by using a Plackett–Burman screening design [glycerol, CAS, and initial cell dry weight (CDW) concentrations] and then optimized through a Box–Wilson design. Under such optimized conditions (22.02 g l−1 glycerol, 1.78 g l−1 CAS, and 1.83 g l−1 inoculum) microaerobic batch cultures gave rise to 8.37 g l−1 CDW and 3.52 g l−1 PHB in 48 h (PHB content of 42%) in a benchtop bioreactor. Further improvements in microaerobic PHB accumulation were obtained in fed-batch cultures, in which glycerol was added to maintain its concentration above 5 g l−1. After 60 h, CDW and PHB concentration reached 21.17 and 10.81 g l−1, respectively, which results in a PHB content of 51%. Microaerobic fed-batch cultures allowed a 2.57-fold increase in volumetric productivity when compared with batch cultures. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

11.
Li Z  Zhang X  Tan T 《Biotechnology letters》2006,28(7):477-483
Over-production of human soluble B lymphocyte stimulator (hsBLyS) was carried out with four different fed-batch culture strategies using lactose as inducer, instead of IPTG, in a fed-batch culture of Escherichia coli. As lactose acted as both inducer and carbon source, the best and simplest culture strategy was direct feeding of lactose after batch culture, thereby giving hsBLyS at 3.7 g l−1 and a productivity of 0.11 g l−1 h−1. Revisions requested 1 September 2005 and 11 November 2005; Revisions received 7 November 2005 and 4 January 2006  相似文献   

12.
Nisin production in batch culture and fed-batch cultures (sucrose feeding rates were 6, 7, 8, and 10 g l–1 h–1, respectively) by Lactococcus lactis subsp. lactis ATCC 11454 was investigated. Nisin production showed primary metabolite kinetics, and could be improved apparently by altering the feeding strategy. The nisin titer reached its maximum, 4,185 IU ml–1, by constant addition of sucrose at a feeding rate of 7 g l–1 h–1; an increase in 58% over that of the batch culture (2,658 IU ml–1). Nisin biosynthesis was affected strongly by the residual sucrose concentration during the feeding. Finally, a mathematical model was developed to simulate the cell growth, sucrose consumption, lactic acid production and nisin production. The model was able to describe the fermentation process in all cases.  相似文献   

13.
Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l−1) and less than 200 g l−1 total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l−1 xylitol concentration, 0.75 g xylitol g xylose−1 xylitol yield and 3.9 g xylitol l−1 h−1 volumetric productivity. Journal of Industrial Microbiology & Biotechnology (2002) 29, 16–19 doi:10.1038/sj.jim.7000257 Received 15 October 2001/ Accepted in revised form 30 March 2002  相似文献   

14.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

15.
High-cell-density production of recombinant growth hormone of Lateolabrax japonicus (rljGH) expressed intracellularly in Pichia pastoris was investigated. In the regular strategy of induction at a cell density of 160 g l−1, short duration of intracellular rljGH accumulation (17 h) resulted in a low final cell density of 226 g l−1. Thus, a novel strategy of induction at a cell density of 320 g l−1 was investigated. In this strategy, the preinduction glycerol-feeding scheme had a significant effect on the post-induction production. Constant glycerol feeding led to a decrease of the specific rljGH production and specific production rate because of low preinduction specific growth rate. This decrease was avoided by exponential glycerol feeding to maintain a preinduction specific growth rate of 0.16 h−1. The results from exponential glycerol feeding indicated that the rljGH production depended on the preinduction specific growth rate. Moreover, mixed feeding of methanol and glycerol during induction improved the specific production rate to 0.07 mg g−1 h−1 from 0.043 mg g−1 h−1. Consequently, both high cell density (428 g l−1) and high rljGH production could be achieved by the novel strategy: growing the cells at the specific growth rate of 0.16 h−1 to the cell density of 320 g l−1 and inducing the expression by mixed feeding.  相似文献   

16.
Liu HJ  Zhang DJ  Xu YH  Mu Y  Sun YQ  Xiu ZL 《Biotechnology letters》2007,29(8):1281-1285
1,3-Propanediol (1,3-PD) can be produced from glycerol by Klebsiella pneumoniae under micro-aerobic conditions. Recently, this fed-batch fermentation process has been successfully scaled up to 1 m3. The final 1,3-PD concentration, molar yield and volumetric productivity of 72 g l−1, 57% and 2.1 g l−1 h−1, respectively, are close to those of 75 g l−1, 61%, and 2.2 g l−1 h−1 under anaerobic conditions. This process would be suitable for the production of 1,3-PD on a large scale.  相似文献   

17.
The effect of glucose concentration on erythritol production by Torula sp. was investigated. The maximum volumetric productivity of erythritol was obtained at an initial glucose concentration of 300 g l−1 in batch culture. The volumetric productivity was maximal at a controlled glucose concentration of 225 g l−1, reducing the lag time of the erythritol production. A fed-batch culture was established with an initial glucose concentration of 300 g l−1 and with a controlled glucose concentration of 225 g l−1 in medium containing phytic acid as a phosphate source. In this fed-batch culture, a final erythritol production of 192 g l−1 was obtained from 400 g l−1 glucose in 88 h. This corresponded to a volumetric productivity of 2.26 g l−1 h−1 and a 48% yield. Journal of Industrial Microbiology & Biotechnology (2001) 26, 248–252. Received 26 September 2000/ Accepted in revised form 16 January 2001  相似文献   

18.
Pseudomonas putida KT2440 grew on glucose at a specific rate of 0.48 h−1 but accumulated almost no poly-3-hydroxyalkanoates (PHA). Subsequent nitrogen limitation on nonanoic acid resulted in the accumulation of only 27% medium-chain-length PHA (MCL-PHA). In contrast, exponential nonanoic acid-limited growth (μ = 0.15 h−1) produced 70 g l−1 biomass containing 75% PHA. At a higher exponential feed rate (μ = 0.25 h−1), the overall productivity was increased but less biomass (56 g l−1) was produced due to higher oxygen demand, and the biomass contained less PHA (67%). It was concluded that carbon-limited exponential feeding of nonanoic acid or related substrates to cultures of P. putida KT2440 is a simple and highly effective method of producing MCL-PHA. Nitrogen limitation is unnecessary.  相似文献   

19.
Cheng KK  Zhang JA  Liu DH  Sun Y  Yang MD  Xu JM 《Biotechnology letters》2006,28(22):1817-1821
Broth containing 152 g glycerol l−1 from Candida krusei culture was converted to 1,3-propanediol by Klebsiella pneumoniae. Residual glucose in the broth promoted growth of K. pneumoniae while acetate was inhibitory. After desalination treatment of glycerol broth by electrodialysis, the acetate in the broth was removed. A fed-batch culture with electrodialytically pretreated broth as␣substrate was developed giving 53 g 1,3- propanediol l−1 with a yield of 0.41 g g−1 glycerol and a productivity of 0.94 g l−1 h−1.  相似文献   

20.
High amounts of outer membrane (OM) components were released in glucose-limited fed-batch (GLFB) cultures at 37 °C at specific growth rates approaching 0.05 h−1. Endotoxin analyses from a 20 °C GLFB culture gave similar results. An alternative fermentation technique, the temperature-limited fed-batch (TLFB) technique, reduced the endotoxin concentration in a culture with a biomass concentration of 30 g l−1 from the 850 mg l−1 in traditional GLFB cultures to about 20 mg l−1. The TLFB technique uses the temperature to regulate the dissolved oxygen tension, while all substrate components are unregulated. It appears to be severe glucose limitation that triggers the extensive release of endotoxins rather than a low growth rate. Furthermore, it is not the low temperature that stabilizes the OM when using the TLFB technique. Simulations and experimental data show that this technique results in the same biomass productivity as the GLFB technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号