首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon’s cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.  相似文献   

2.
Members of the Slit family are large extracellular glycoproteins that may function as chemorepellents in axon guidance and neuronal cell migration. Their actions are mediated through members of the Robo family that act as their receptors. In vertebrates, Slit causes chemorepulsion of embryonic olfactory tract, spinal motor, hippocampal and retinal ganglion cell axons. Since Slits are expressed in the septum and floor plate during the period when these tissues cause chemorepulsion of olfactory tract and spinal motor axons respectively, it has been proposed that Slits function as guidance cues. We have tested this hypothesis in collagen gel co-cultures using soluble Robo/Fc chimeras, as competitive inhibitors, to disrupt Slit interactions. We find that the addition of soluble Robo/Fc has no effect on chemorepulsion of olfactory tract and spinal motor axons when co-cultured with septum or floor plate respectively. Thus, we conclude that although Slits are expressed in the septum and floor plate, their proteins do not contribute to the major chemorepulsive activities emanating from these tissues which cause repulsion of olfactory tract and spinal motor axons.  相似文献   

3.
Primary sensory neurons in the vomeronasal organ (VNO) project axons to the glomeruli of the accessory olfactory bulb (AOB) where they form connections with mitral cell dendrites. We demonstrate here that monoclonal antibodies to specific carbohydrate antigens define stage- and position-specific events during the development of the vomeronasal system (VN). CC1 monoclonal antibodies react with specific N-acetyl galactosamine containing glycolipids. In the embryo, CC1 antigens are expressed throughout the VNO and on vomeronasal nerves. Beginning approximately at birth and continuing into adults, CC1 expression is spatially restricted in the VNO to centrally located cell bodies. In the postnatal AOB, CC1 is expressed in the nerve layer and glomeruli, but only in the rostral half of the AOB. These data suggest that CC1 antigens may participate in the targeting of axons from centrally located VNO neurons to rostral glomeruli in the AOB. In contrast, CC2 monoclonal antibodies, which recognize complex alpha-galactosyl and alpha-fucosyl glycoproteins and glycolipids, react with all VNO cell bodies and VN nerves from embryonic (E) day 15 to adults. CC2 antibodies do not distinguish rostral from caudal regions of the AOB, nor are the CC2 glycoconjugates developmentally regulated. P-Path monoclonal antibodies, which recognize 9-O-acetyl sialic acid, react with cell bodies in the VNO and nerve fibers from E13 to postnatal (P) day 2. P-Path immunoreactivity disappears from the VNO system almost completely by P14, when only a few P-Path reactive nerve fibers can be seen. These studies suggest that specific cell surface glycoconjugates may participate in spatially and temporally selective cell-cell interactions during development and maintenance of vomeronasal connections.  相似文献   

4.
Primary sensory neurons in the vomeronasal organ (VNO) project axons to the glomeruli of the accessory olfactory bulb (AOB) where they form connections with mitral cell dendrites. We demonstrate here that monoclonal antibodies to specific carbohydrate antigens define stage- and position-specific events during the development of the vomeronasal system (VN). CC1 monoclonal antibodies react with specific N-acetyl galactosamine containing glycolipids. In the embryo, CC1 antigens are expressed throughout the VNO and on vomeronasal nerves. Beginning approximately at birth and continuing into adults, CC1 expression is spatially restricted in the VNO to centrally located cell bodies. In the postnatal AOB, CC1 is expressed in the nerve layer and glomeruli, but only in the rostral half of the AOB. These data suggest that CC1 antigens may participate in the targeting of axons from centrally located VNO neurons to rostral glomeruli in the AOB. In contrast, CC2 monoclonal antibodies, which recognize complex α-galactosyl and α-fucosyl glycoproteins and glycolipids, react with all VNO cell bodies and VN nerves from embryonic (E) day 15 to adults. CC2 antibodies do not distinguish rostral from caudal regions of the AOB, nor are the CC2 glycoconjugates developmentally regulated. P-Path monoclonal antibodies, which recognize 9-O-acetyl sialic acid, react with cell bodies in the VNO and nerve fibers from E13 to postnatal (P) day 2. P-Path immunoreactivity disappears from the VNO system almost completely by P14, when only a few P-Path reactive nerve fibers can be seen. These studies suggest that specific cell surface glycoconjugates may participate in spatially and temporally selective cell–cell interactions during development and maintenance of vomeronasal connections.  相似文献   

5.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

6.
A role for the EphA family in the topographic targeting of vomeronasal axons   总被引:10,自引:0,他引:10  
We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.  相似文献   

7.
Goats have a well-developed vomeronasal (VN) system and exhibit pheromone-induced reproductive facilitation, but there are no reports on the projection pattern of VN neurons in this species. Rodent, guinea pig and opossum accessory olfactory bulbs (AOBs) have been shown to have a segregated pattern of projection of the VN neurons, which express the two alpha-subtypes of the G-protein, namely Gi2 and Go, to the rostral and caudal regions of the AOB, respectively. In this study we investigated the projection pattern of VN nerve terminals by immunocytochemical staining of the goat vomeronasal organ (VNO) and the AOB with antibodies to Gi2 and Go. Gi2-immunoreactivity was found on the luminal surface of the sensory epithelium of the VNO, and in the VN nerve and glomerular layer throughout the AOB. On the other hand, Go-immunoreactivity was not identified in either the VNO or the VN nerve layer of the AOB. These results indicate that the projection pattern of VN neurons from the VNO to the AOB in the goat is considerably different from that in rodents which show a distinct segregated pattern.  相似文献   

8.
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.  相似文献   

9.
Halpern  M; Shapiro  LS; Jia  C 《Chemical senses》1998,23(4):477-481
The mammalian accessory olfactory bulb (AOB) is chemoarchitecturally heterogeneous in that it stains differentially with a number of markers; the receptor cells that project to the AOB are similarly heterogeneous. What is the significance of this heterogeneity? We have found that the AOB of the gray, short-tailed opossum, Monodelphis domestica, stains differentially with a number of 'markers': antibodies to olfactory marker protein (OMP) and the alpha subunit of the G protein Gi2, the lectin of Vicia villosa and NADPH-diaphorase. These markers stain the rostral AOB more strongly than the caudal AOB whereas, the G protein subunit G(o) alpha is located predominantly in the posterior subdivision of the AOB. This heterogeneity in the chemoarchitecture of the AOB may reflect a fundamental organizational dichotomy within the vomeronasal system that corresponds to a functional dichotomy. The vomeronasal sensory epithelium also exhibits a chemoarchitectural heterogeneity: receptor cells in the basal third are G(o) alpha-immunoreactive whereas the cells in the middle third are Gi2 alpha-immunoreactive. Tracing studies using WGA-HRP demonstrate that the neurons in the middle third of the vomeronasal sensory epithelium project their axons to the anterior AOB whereas those in the basal third appear to project to the posterior AOB.   相似文献   

10.
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit.  相似文献   

11.
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.  相似文献   

12.
Neural crest cells migrate along two discrete pathways within the trunk of developing embryos. In the chick, early migrating crest cells are confined to a ventral pathway medial to the dermamyotome while later cells migrate on a dorsal pathway lateral to the dermamyotome. Here we show that Slits are expressed in the dermamyotome, that early migrating crest cells express the Slit receptors Robo 1 and Robo 2, that Slit2 repels migrating crest cells in an in vitro assay, and that the misexpression of a dominant-negative Robo1 receptor induces a significant fraction of early crest cells to migrate ectopically in the dorso-lateral pathway. These findings suggest that Slits, most likely those expressed in the dermamyotome, help to confine the migration of early crest cells to the ventral pathway.  相似文献   

13.
The Slit molecules are chemorepulsive ligands that regulate axon guidance at the midline of both vertebrates and invertebrates. In mammals, there are three Slit genes, but only Slit2 has been studied in any detail with regard to mammalian brain commissure formation. Here, we sought to understand the relative contributions that Slit proteins make to the formation of the largest brain commissure, the corpus callosum. Slit ligands bind Robo receptors, and previous studies have shown that Robo1(-/-) mice have defects in corpus callosum development. However, whether the Slit genes signal exclusively through Robo1 during callosal formation is unclear. To investigate this, we compared the development of the corpus callosum in both Slit2(-/-) and Robo1(-/-) mice using diffusion magnetic resonance imaging. This analysis demonstrated similarities in the phenotypes of these mice, but crucially also highlighted subtle differences, particularly with regard to the guidance of post-crossing axons. Analysis of single mutations in Slit family members revealed corpus callosum defects (but not complete agenesis) in 100% of Slit2(-/-) mice and 30% of Slit3(-/-) mice, whereas 100% of Slit1(-/-); Slit2(-/-) mice displayed complete agenesis of the corpus callosum. These results revealed a role for Slit1 in corpus callosum development, and demonstrated that Slit2 was necessary but not sufficient for midline crossing in vivo. However, co-culture experiments utilising Robo1(-/-) tissue versus Slit2 expressing cell blocks demonstrated that Slit2 was sufficient for the guidance activity mediated by Robo1 in pre-crossing neocortical axons. This suggested that Slit1 and Slit3 might also be involved in regulating other mechanisms that allow the corpus callosum to form, such as the establishment of midline glial populations. Investigation of this revealed defects in the development and dorso-ventral positioning of the indusium griseum glia in multiple Slit mutants. These findings indicate that Slits regulate callosal development via both classical chemorepulsive mechanisms, and via a novel role in mediating the correct positioning of midline glial populations. Finally, our data also indicate that some of the roles of Slit proteins at the midline may be independent of Robo signalling, suggestive of additional receptors regulating Slit signalling during development.  相似文献   

14.
Upon arriving at their targets, developing axons cease pathfinding and begin instead to arborize and form synapses. To test whether CNS arborization and synaptogenesis are controlled by Slit-Robo signaling, we followed single retinal ganglion cell (RGC) arbors over time. ast (robo2) mutant and slit1a morphant arbors had more branch tips and greater arbor area and complexity compared to wild-type and concomitantly more presumptive presynaptic sites labeled with YFP-Rab3. Increased arborization in ast was phenocopied by dominant-negative Robo2 expressed in single RGCs and rescued by full-length Robo2, indicating that Robo2 acts cell-autonomously. Time-lapse imaging revealed that ast and slit1a morphant arbors stabilized earlier than wild-type, suggesting a role for Slit-Robo signaling in preventing arbor maturation. Genetic analysis showed that Slit1a acts both through Robo2 and Robo2-independent mechanisms. Unlike previous PNS studies showing that Slits promote branching, our results show that Slits inhibit arborization and synaptogenesis in the CNS.  相似文献   

15.
The Trpc2 gene codes for an ion channel found in the vomeronasal organ (VNO). Studies using the Trpc 2−/− (KO) mouse have exploited the gene's role in signal transduction to explore the VNO's role in pheromonally mediated behaviors. To date, no study has evaluated the impact of the Trpc2 gene on activity within the brain. In this study, we examine the gene's effect on brain regions governing maternal aggression. We intruder-tested lactating dams and then quantified Fos immunoreactivity (Fos-IR) in the vomeronasal amygdala, hypothalamus, olfactory regions and accessory olfactory bulb (AOB). Our data confirm previous reports that loss of the Trpc2 gene severely diminishes maternal aggression. We also show that deletion of the gene results in differential hypotrophy of the glomerular layer (GlA) of the AOB, with the anterior portion the GlA resembling that of wild-type mice, and the posterior portion reduced or absent. This anatomy is suggestive of residual functioning in the apical VNO of these animals. Our Fos study describes an impact of the deletion on a network of 21 brain regions involved in emotion, aggression and olfaction, suggesting that signals from the VNO mediate activity throughout the brain. Home-cage observations of KO dams show specific deficits in nest-building, suggesting a role for pup pheromones in inducing and maintaining pup-directed maternal behaviors as well as maternal aggression.  相似文献   

16.
棕色田鼠雄性幼体不同发育期犁鼻器和副嗅球的组织结构   总被引:1,自引:0,他引:1  
通过对出生后不同发育时期雄性棕色田鼠犁鼻器和副嗅球进行组织学观察, 探讨棕色田鼠出生后犁鼻器和副嗅球的发育规律。实验以出生后当天(0 日龄) , 5 日龄, 15 日龄, 25 日龄以及成年棕色田鼠为研究对象,副嗅球采用Pischinger 氏染色法染色, 犁鼻器用H. E. 染色法染色后进行组织学观察。结果显示, 棕色田鼠出生时, 犁鼻器和副嗅球就已具有成体的基本结构, 随着动物个体的发育, 犁鼻上皮逐渐增厚, 犁鼻管变长, 犁鼻上皮中神经元密度增加; 腺体逐渐增大, 犁鼻管腔填充物增多, 犁鼻管背外侧的静脉血管逐日增大, 管腔周围出现越来越多的血管; 副嗅球长宽都增加, 僧帽细胞层和颗粒细胞层逐渐增长, 各层细胞密度变化稍有不同;出生后15 日内, 僧帽细胞层细胞密度增加, 15 日龄以后又开始降低, 25 日龄及成体的僧帽细胞层细胞密度与5日龄的相似; 颗粒细胞层细胞密度持续增高。实验结果提示, 棕色田鼠5 日龄时, 犁鼻器和副嗅球已具有了完整的结构, 到25 日龄时可能达到了功能上的成熟。  相似文献   

17.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

18.
In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin‐2 expressed by ventral‐zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early‐arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal‐zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73:828–840, 2013  相似文献   

19.
Liu X  Lu Y  Zhang Y  Li Y  Zhou J  Yuan Y  Gao X  Su Z  He C 《The Journal of biological chemistry》2012,287(21):17503-17516
Oligodendrocyte precursor cells (OPCs) are a unique type of glia that are responsible for the myelination of the central nervous system. OPC migration is important for myelin formation during central nervous system development and repair. However, the precise extracellular and intracellular mechanisms that regulate OPC migration remain elusive. Slits were reported to regulate neurodevelopmental processes such as migration, adhesion, axon guidance, and elongation through binding to roundabout receptors (Robos). However, the potential roles of Slits/Robos in oligodendrocytes remain unknown. In this study, Slit2 was found to be involved in regulating the dispersal of OPCs through the association between Robo1 and Fyn. Initially, we examined the expression of Robos in OPCs both in vitro and in vivo. Subsequently, the Boyden chamber assay showed that Slit2 could inhibit OPC migration. RoboN, a specific inhibitor of Robos, could significantly attenuate this effect. The effects were confirmed through the explant migration assay. Furthermore, treating OPCs with Slit2 protein deactivated Fyn and increased the level of activated RhoA-GTP. Finally, Fyn was found to form complexes with Robo1, but this association was decreased after Slit2 stimulation. Thus, we demonstrate for the first time that Slit2 regulates the dispersal of oligodendrocyte precursor cells through Fyn and RhoA signaling.  相似文献   

20.
Simpson JH  Bland KS  Fetter RD  Goodman CS 《Cell》2000,103(7):1019-1032
Slit is secreted by midline glia in Drosophila and functions as a short-range repellent to control midline crossing. Although most Slit stays near the midline, some diffuses laterally, functioning as a long-range chemorepellent. Here we show that a combinatorial code of Robo receptors controls lateral position in the CNS by responding to this presumptive Slit gradient. Medial axons express only Robo, intermediate axons express Robo3 and Robo, while lateral axons express Robo2, Robo3, and Robo. Removal of robo2 or robo3 causes lateral axons to extend medially; ectopic expression of Robo2 or Robo3 on medial axons drives them laterally. Precise topography of longitudinal pathways appears to be controlled by a combination of long-range guidance (the Robo code determining region) and short-range guidance (discrete local cues determining specific location within a region).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号