首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li  Bo  Cai  Haiya  Liu  Ke  An  Bingzhuang  Wang  Rong  Yang  Fang  Zeng  Changli  Jiao  Chunhai  Xu  Yanhao 《Journal of Plant Growth Regulation》2023,42(2):780-794

DNA methylation is an important epigenetic mechanism involved in gene regulation under environmental stresses in plants. However, little information is available regarding its responses to high temperature (HT) and association with HT tolerance in rice. In this study, fourteen rice genotypes were classified into the susceptible, moderate, and tolerant groups by the high temperature susceptibility index (HTSI) after HT treatment. The changes of DNA methylation in rice anthesis under normal and HT30 conditions were investigated using methylation-sensitive amplified polymorphism31 (MSAP). The MSAP results showed that the DNA methylation level significantly increased in the susceptible rice group and decreased in the tolerant rice group under HT treatment, while no significant difference was observed in the moderate rice group. More hypomethylation events were detected in the tolerant rice group, while more hypermethylation was detected in the susceptible rice group. Forty-four differentially methylated epiloci (DME) were generated under both control and HT conditions, which can clearly distinguish the susceptible, moderate, and tolerant genotypes via PCoA analysis. Approximately 43.18% of DMEs were determined to be tolerance-associated epiloci (TAEs). 63.15% TAEs were sequenced and annotated into 12 genes. Quantitative RT-PCR analysis showed that 12 TAE genes were mainly upregulated in 14 rice genotypes, and their expression levels were related to the HT tolerance of rice. Here, DEGs, generated from a number of genotypes, indicate higher probabilities for association with stress tolerance. Overall, these results suggest that DNA methylation regulation might play a key role in adaptation to HT stress in rice.

  相似文献   

2.
The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil.  相似文献   

3.
Water status is the main factor affecting rice production. In order to understand rice strategies in response to drought condition in the field, the drought-responsive mechanisms at the physiological and molecular levels were studied in two rice genotypes with contrasting susceptibility to drought stress at reproductive stage. After 20 d of drought treatment, the osmotic potential of leaves reduced 78% and 8% in drought susceptible rice cultivar Zhenshan97B and tolerant rice cultivar IRAT109, respectively. The panicle lengths had no obvious changes in drought stressed Zhenshan97B and IRAT109, suggesting that drought stress impose less effect on assimilate translocation from leaf to vegetative growth of panicles. IRAT109 showed more extensive deeper root growth that could be considered a second line of defense against drought stress. The Ci/Ca ratio exhibited enhancement over reduction of gs in both cultivars, reflecting the non-stomatal limitation to photosynthesis occurred during drought stress. Orthophosphate dikinase, glycine dehydrogenase, ribulose bisphosphate carboxylase (Rubisco), glycine hydroxymethyltransferase and ATP synthase were down-regulated for Zhenshan97B in response to drought stress, suggesting the reduction of capacity of carbon assimilation in this rice cultivar. In drought-stressed IRAT109, transketolase, Rubisco were down-regulated, however, Rubisco activase and peptidyl-prolyl cis-trans isomerase, which might alleviate the damage on Rubisco by drought stress, were up-regulated. The increased abundances of chloroplastic superoxide dismutase [Cu-Zn] and dehydroascorbate reductase might provide antioxidant protection for IRAT109 against damage by dehydration.  相似文献   

4.
DNA methylation is one of the epigenetic mechanisms regulating gene expression in plants in response to environmental conditions. In this study, analysis of methylation patterns was carried out in order to assess the effect of water stress in two contrasting wheat genotypes using methylation-sensitive amplified polymorphism (MSAP). The results revealed that demethylation was higher in drought-tolerant genotype (C306) as compared to drought-sensitive genotype (HUW468) after experiencing drought stress. Comparisons of different MSAP patterns showed a high percentage of polymorphic bands between tolerant and susceptible wheat genotypes (from 74.79 % at anthesis to 88.89 % at tillering). Furthermore, differential DNA methylation in roots and leaves also revealed tissue-specific methylation of genomic DNA. Interestingly, 54 developmental stage-specific bands and 23 bands that were found contrasting between these two wheat genotypes were detected. Furthermore, a few sites with stable DNA methylation differences were identified between drought-tolerant and drought-sensitive cultivars, thus providing genotype-specific epigenetic markers. These results not only provide data on differences in DNA methylation changes but also contribute to dissection of molecular mechanisms of drought response and tolerance in wheat.  相似文献   

5.
6.
Inter- or intraspecific hybridization is the first step in transferring exogenous traits to the germplasm of a recipient crop. One of the complicating factors is the occurrence of epigenetic modifications of the hybrids, which in turn can change their gene expression and phenotype. In this study we present an analysis of epigenome changes in rice hybrids that were obtained by crossing rice cultivars, most of them of indica type and Thai origin. Comparing amplified fragment length polymorphism (AFLP) fingerprints of twenty-four cultivars, we calculated Nei’s indexes for measuring genetic relationships. Epigenetic changes in their hybrids were established using methylation-sensitive AFLP fingerprinting and transposon display of the rice transposable elements (TEs) Stowaway Os-1 and Mashu, leading to the question whether the relationship between parental genomes is a predictor of epigenome changes, TE reactivation and changes in TE methylation. Our study now reveals that the genetic relationship between the parents and DNA methylation changes in their hybrids is not significantly correlated. Moreover, genetic distance correlates only weakly with Mashu reactivation, whereas it does not correlate with Stowaway Os-1 reactivation. Our observations also suggest that epigenome changes in the hybrids are localized events affecting specific chromosomal regions and transposons rather than affecting the genomic methylation landscape as a whole. The weak correlation between genetic distance and Mashu methylation and reactivation points at only limited influence of genetic background on the epigenetic status of the transposon. Our study further demonstrates that hybridizations between and among specific japonica and indica cultivars induce both genomic DNA methylation and reactivation/methylation change in the Stowaway Os-1 and Mashu transposons. The observed epigenetic changes seem to affect the transposons in a clear manner, partly driven by stochastic processes, which may account for a broader phenotypic plasticity of the hybrids. A better understanding of the epigenome changes leading to such transposon activation can lead to the development of novel tools for more variability in future rice breeding.  相似文献   

7.
DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.) genotypes, HPKC2 (drought-sensitive) and HPK4 (drought-tolerant). The methylation pattern in both genotypes was studied through methylation-sensitive amplified polymorphism. The results revealed that methylation was higher in HPKC2 (10.1%) than in HPK4 (8.6%). Sequencing demonstrated sequence homology with the DRE binding factor (cbf1), the POZ/BTB protein, and the Ty1-copia retrotransposon among some of the polymorphic fragments showing alteration in methylation behavior. Differences in DNA methylation patterns could explain the differential drought tolerance and the epigenetic signature of these two horse gram genotypes.  相似文献   

8.
9.

Using agro-morphological characters and microsatellite markers, advance breeding lines of rice were discriminated for their ability to tolerate drought stress at reproductive stage. Experimental materials consisting of 17 advance breeding lines and a check were evaluated in randomized block design with three replications under irrigated condition and drought condition created under rainout shelter during three consecutive years. An analysis of variance revealed significant differences among the genotypes for all the ten agro-morphological characters evaluated under both the conditions across the years. Principal component analysis showed the relative importance of root length, number of tillers per plant, number of grains per panicle, harvest index and grain yield per plant among agro-morphological characters and stress tolerance level, stress susceptibility index, stress tolerance index and drought tolerance efficiency among drought tolerance indices as the important classification variables. Relative mean performance in respect of grain yield as well as drought tolerance indices reflected remarkably greater degree of drought tolerance in 11 advance breeding lines and the check, discriminating them from remaining entries under evaluation. Utilizing a panel of 32 microsatellite primers, selective amplification of targeted genomic regions revealed that the primers RM 72, RM 163, RM 212, RM 225, RM 231, RM 302, RM 327, RM 518, RM 521, RM 555, RM 1349, RM 3549 and RM 5443 were highly informative with greater gene diversity and discrimination ability. Hierarchical cluster analysis based on molecular profiles discriminated the entries into five genotypic groups and drought tolerant entries were accommodated into three distinct groups with remarkably greater efficiency (85.7%). Principal coordinate analysis based two dimensional plots of microsatellites dependent genetic profiles displayed a very close correspondence with the genotypic clustering pattern revealed from a perusal of dendrogram. Sequential exclusion of primers in cluster analysis led to identification of RM 212, RM 231, RM 324, RM 431, RM 521, RM 3549 and RM 6374 as the most useful primers for discrimination of drought tolerant and susceptible lines of rice. Molecular profiling based on these markers can be utilized as efficient tools for discrimination and identification of drought tolerant lines.

  相似文献   

10.
Gardenia jasminoides Ellis is an evergreen tropical plant and favorite to gardeners throughout the world. Several studies have documented that in vitro micropropagation can be used for clonal propagation of G. jasminoides Ellis, the efficiency remained low. In addition, no information is available on the genetic and epigenetic fidelity of the micropropagated plants. Here, we report on a simplified protocol for high efficient micropropagation of G. jasminoides Ellis cv. “Kinberly” based on enhanced branching of shoot-tips as explants. The protocol consisted of sequential use of three media, namely, bud-induction, elongation and root-induction. By using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation sensitive amplified polymorphism (MSAP), we analyzed the genetic and DNA methylation pattern stability of 23 morphologically normal plants randomly taken from a sub-population (>100) of micropropagated plants originated from a single shoot-tip. We found that of >1,000 scored AFLP bands across the 23 micropropagated plants, no incident of genetic variation was detected. In contrast, of 750 scored MSAP bands, moderate but clear alteration in several DNA methylation patterns occurred in the majority of the 23 micropropagated plants. The changed methylation patterns involved both CG and CHG sites representing either hyper- or hypo-methylation, which occurred without altering the total methylation levels partly due to concomitant hyper- and hypo-methylation alterations. Our results indicated that epigenetic instability in the form of DNA methylation patterns can be susceptible to the in vitro micropropagation process for G. jasminoides Ellis, and needs to be taken into account in the process of large-scale commercial propagation of this plant.  相似文献   

11.
To identify microsatellite markers associated with root traits for drought tolerance in rice (Oryza sativa L.) a study was conducted at Department of Plant Physiology, College of Agriculture, Trivandrum, Kerala Agricultural University. A set of thirty-five rice genotypes were exposed to water stress and evaluated for physio-morphological components as indices of water stress tolerance. Observations were made on leaf rolling score and root traits, especially the root length, root dry weight, root volume and root shoot ratio at booting stage. As of the data obtained, ten tolerant and ten susceptible varieties were selected for bulk line analysis to identify the DNA markers linked with target gene conferring drought tolerance. Out of 150 SSR primers screened, RM474 showed polymorphism between the tolerant and susceptible bulks. Individual genotypes of the bulks also showed the same product size of the respective tolerant and susceptible bulks.  相似文献   

12.
Drought is the major environmental stress that limits rice productivity worldwide. In vitro somaclonal variation using different selection agents has been used for crop improvement. Here, rice plants of cv PR113 were selected in vitro on 30, 50 and 70 g L-1 polyethylene glycol 6,000 (PEG). Callus growth, proliferation, calli volume (first and second culture) and plantlet regeneration (third culture) were found to be decreased upto a certain level to acquire tolerance to PEG-induced drought. From the field data, 30 g L-1 PEG lines showed higher vegetative growth (plant height, tiller number, leaf number, shoot weight and root growth) as compared with 50 g L-1 PEG selected somaclone lines under limited irrigation. The yield parameters-panicle length, panicle weight, grains per panicle, 1,000-grain weight, grain yield per plant, harvest index and grain straw ratio were also higher in 30 g L-1 PEG lines as compared with 50 g L-1 PEG lines. The results, therefore indicate that 30 g L-1 PEG selected somaclone lines were more suited than 50 g L-1 PEG selected somaclone lines under stress as compared with WT. The finding suggests that rice cv PR113 somaclones generated on PEG are found to be drought tolerant under field condition with better yield.  相似文献   

13.
14.
This study was undertaken to investigate oxidative stress tolerant mechanisms in chilli (Capsicum annuum L.) under drought genotypes through evaluating morphological, physiological, biochemical and stomatal parameters. Twenty genotypes were evaluated for their genetic potential to drought stress tolerant at seedling stage. Thirty days old seedlings were exposed to drought stress induced by stop watering for the following 10 days and rewatering for the following one week as recovery. Based on their survival performance, two tolerant genotypes viz. BD-10906 and BD-109012 and two susceptible genotypes viz. BD-10902 and RT-20 were selected for studying the oxidative stress tolerance mechanism. Drought reduced root and shoot length, dry weight, ratio, petiole weight and leaf area in both tolerant and susceptible genotypes, and a higher reduction was observed in susceptible genotypes. Lower reduction of leaf area and photosynthetic pigments were also found in tolerant genotypes. Moreover, tolerant genotypes showed higher recovery than susceptible genotypes after the removal of stress. A higher reduction of relative water content (RWC) may cause an imbalance between absorbed and transpirated water in susceptible genotypes. Higher accumulation of proline in tolerant genotypes might be helpful to for better osmotic maintenance than that in susceptible genotypes. Tolerant genotypes showed higher antioxidant activity as they showed DPPH radical scavenging percentage than the susceptible genotypes. Moreover, closer stomata in tolerant genotypes than susceptible ones helped to avoid dehydration in tolerant genotypes. Thus, the above morphological, physiological, biochemical and stomatal parameters helped to show better tolerance in chilli under drought stress.  相似文献   

15.
DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5′-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5′-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.  相似文献   

16.
Resistance to pre-harvest sprouting (PHS) is an important objective for the genetic improvement of many cereal crops, including wheat. Resistance, or susceptibility, to PHS is mainly influenced by seed dormancy, a complex trait. Reduced seed dormancy is the most important aspect of seed germination on a spike prior to harvesting, but it is influenced by various environmental factors including light, temperature and abiotic stresses. The basic genetic framework of seed dormancy depends on the antagonistic action of abscisic acid (ABA) and gibberellic acid (GA) to promote dormancy and germination. Recent studies have revealed a role for epigenetic changes, predominantly histone modifications, in controlling seed dormancy. To investigate the role of DNA methylation in seed dormancy, we explored the role of ARGONAUTE4_9 class genes in seed development and dormancy in wheat. Our results indicate that the two wheat AGO4_9 class genes i.e. AGO802 and AGO804 map to chromosomes 3S and 1S are preferentially expressed in the embryos of developing seeds. Differential expressions of AGO802-B in the embryos of PHS resistant and susceptible varieties also relates with DNA polymorphism in various wheat varieties due to an insertion of a SINE-like element into this gene. DNA methylation patterns of the embryonic tissue from six PHS resistant and susceptible varieties demonstrate a correlation with this polymorphism. These results suggest a possible role for AGO802-B in seed dormancy and PHS resistance through the modulation of DNA methylation.  相似文献   

17.
Rice being a staple cereal is extremely susceptible towards abiotic stresses. Drought and salinity are two vital factors limiting rice cultivation in Eastern Indo-Gangetic Plains (EIGP). Present study has intended to evaluate the consequences of salinity stress on selected drought tolerant rice genotypes at the most susceptible seedling stage with an aim to identify the potential multi-stress (drought and salt) tolerant rice genotype of this region. Genotypic variation was obvious in all traits related to drought and salt susceptibility. IR84895-B-127-CRA-5-1-1, one of the rice genotypes studied, exhibited exceptional drought and salinity tolerance. IR83373-B-B-25-3-B-B-25-3 also displayed enhanced drought and salt tolerance following IR84895-B-127-CRA-5-1-1. Variations were perceptible in different factors involving photosynthetic performance, proline content, lipid peroxidation, K+/Na+ ratio. Accumulation of reactive oxygen species (ROS) disintegrated cellular and sub-cellular membrane leading to decreased photosynthetic activities. Therefore, accumulation and detoxification of reactive oxygen species was also considered as a major determinant of salt tolerance. IR84895-B-127-CRA-5-1-1 showed improved ROS detoxification mediated by antioxidant enzymes. IR84895-B-127-CRA-5-1-1 seedlings also displayed significant recovery after removal of salt stress. The results established a direct association of ROS scavenging with improved physiological activities and salt tolerance. The study also recommended IR84895-B-127-CRA-5-1-1 for improved crop performance in both drought and saline environments of EIGP. These contrasting rice genotypes may assist in understanding the multiple stress associated factors in concurrent drought and salt tolerant rice genotypes.  相似文献   

18.
19.
20.
Wu  Chao  Song  Youjin  Qi  Beibei  Fahad  Shah 《Journal of Plant Growth Regulation》2023,42(2):630-636

Heat stress during the panicle initiation stage hinders the formation of rice grains. It is speculated that heat exposure during the panicle initiation stage could influence grain quality in rice. To obtain preliminary knowledge on the effects of asymmetric heat on rice grain quality during the panicle initiation stage, four rice genotypes (Shanyou63, Liangyoupeijiu, Huanghuazhan, and Nagina22) were subjected to three heat treatments, i.e., high daytime temperature (HDT; 37.9 °C/24.5 °C), high nighttime temperature (HNT; 30.9 °C/30.5 °C), the combination of high daytime and nighttime temperature (HDNT; 38.5 °C/31.0 °C), and a control (CK, 31.5 °C/24.0 °C) in temperature-controlled greenhouses for 15 days during the panicle initiation stage. The milling and appearance qualities, which are crucial for commercial value, were studied. Heat treatments significantly reduced the amounts of brown rice, milled rice, and head rice and the grain length, grain width, chalky grain amount, and grain chalkiness in the rice genotypes Liangyoupeijiu, Nagina22, and Huanghuazhan during the panicle initiation stage, and the largest reductions in grain quality were frequently observed under HDNT treatment. The milling and appearance qualities in genotype Shanyou63 were negligibly affected by heat treatments and thus were regarded as tolerant to heat, and the rice genotypes Liangyoupeijiu, Huanghuazhan, and especially Nagina22 were susceptible to heat during the panicle initiation stage. We concluded that heat stress during panicle initiation impacted the milling and appearance qualities in rice, and differences existed among rice genotypes. The underlying mechanisms of the effects of heat on rice grain quality need further study.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号