首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The least ambiguous genetic markers are those based on completely characterized DNA sequence polymorphisms. Unfortunately, assaying allele states by allele sequencing is slow and cumbersome. The most desirable type of genetic marker would be unambiguous, inexpensive to assay and would be assayable singly or in parallel with hundreds of other markers (multiplexable). In this report we sequenced alleles at 54 barley (Hordeum vulgare ssp. vulgare) loci, 38 of which contained single-nucleotide polymorphisms (SNPs). Many of these 38 loci contained multiple polymorphisms, and a total of 112 polymorphisms were scored in five barley genotypes. The polymorphism data set was analyzed both by using the individual mutations as cladistic characters and by reducing data for each locus to haplotypes. We compared the informativeness of these two approaches by consensus tree construction and bootstrap analysis. Both approaches provided similar results. Since some of the loci sequenced contained insertion/deletion events and multiple point mutations, we thought that these multiple-mutated loci might represent old alleles that predated the divergence of barley from H. spontaneum. We evaluated sequences from a sample of H. spontaneum accessions from the Eastern Mediterranean, and observed similar alleles present in both cultivated barley and H. spontaneum, suggesting either multiple domestication events or multiple transfers of genes between barley and its wild ancestor.  相似文献   

2.
The domestication of plants frequently results in a high level of genetic differentiation between domesticated plants and their wild progenitors. This process is counteracted by gene flow between wild and domesticated plants because they are usually able to inter‐mate and to exchange genes. We investigated the extent of gene flow between wild barley Hordeum spontaneum and cultivated barley Hordeum vulgare, and its effect on population structure in wild barley by analysing a collection of 896 wild barley accessions (Barley1K) from Israel and all available Israeli H. vulgare accessions from the Israeli gene bank. We compared the performance of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) marker data genotyped over a core collection in estimating population parameters. Estimates of gene flow rates with SSR markers indicated a high level of introgression from cultivated barley into wild barley. After removing accessions from the wild barley sample that were recently admixed with cultivated barley, the inference of population structure improved significantly. Both SSR and SNP markers showed that the genetic population structure of wild barley in Israel corresponds to the three major ecogeographic regions: the coast, the Mediterranean north and the deserts in the Jordan valley and the South. Gene flow rates were estimated to be higher from north to south than in the opposite direction. As has been observed in other crop species, there is a significant exchange of alleles between the wild species and domesticated varieties that needs to be accounted for in the population genetic analysis of domestication.  相似文献   

3.
Recombinant chromosome substitution lines (RCSLs) were developed in BC3 generation to introduce segments of a wild barley strain ‘H602’ (Hordeum vulgare ssp. spontaneum) into a barley cultivar ‘Haruna Nijo’ (H. vulgare ssp. vulgare) genetic background. One hundred thirty four RCSLs were genotyped by 25 SSR and 60 EST markers, which were localized on a linkage map of doubled haploid lines (DHLs) derived from the same cross combination. Graphical genotyping revealed that the observed average substitution ratio of H602 segment (12.9%) agreed with the expected substitution ratio (12.5%), and a minimum set of 19 RCSLs represented the entire H602 genome. Phenotypes of five qualitative and nine quantitative traits were scored in both the RCSLs and DHLs. Five qualitative traits were localized as morphological markers on the linkage map of the DHLs, and these molecular markers were aligned on the respective chromosomal regions in the RCSLs. Simple and composite interval mapping procedures detected a total of 18 and 24 QTLs for nine qualitative traits on the RCSLs and DHLs, respectively. Several QTLs were localized at coincident or very close regions on both linkage maps. In spite of general inferior agronomic performances in wild barley, several H602 QTL alleles showed agronomically positive effects. These RCSLs should contribute to substitution of favorable alleles from wild barley into cultivated barley. These RCSLs are also available as sources of near isogenic lines, with which we can apply advanced genetic analysis methods such as isolation of QTLs and detection of epistatic interactions among QTLs.  相似文献   

4.
One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA.  相似文献   

5.
The origin of six-rowed cultivated barley was studied using a DNA marker cMWG699 closely linked to the vrs1 locus. Restriction patterns of the PCR-amplified product of the cMWG699 locus were examined in 280 cultivated (Hordeum vulgare ssp. vulgare) and 183 wild (H. vulgare ssp. spontaneum) barleys. Nucleotide sequences of the PCR products were also examined in selected accessions. Six-rowed cultivated barleys were divided into two distinct groups, types I and II. Type I six-rowed cultivated barley was distributed widely while type II six-rowed cultivated barley was found only in the Mediterranean region. The type I sequence was also found in a wild barley accession from Turkmenistan whereas the type II sequence was also found in a two-rowed cultivated barley from North Africa and a wild barley from Morocco. These results suggested that the six-rowed type I and II barleys were derived from two-rowed type I and II barleys, respectively, by independent mutations at the vrs1 locus. Received: 3 November 2000 / Accepted: 17 April 2001  相似文献   

6.
The results of previous studies conducted at the University of Hohenheim and the International Center for Agricultural Research in the Dry Areas (ICARDA) indicated that the yielding ability and stability of barley (Hordeum vulgare L.) could be improved in environments with drought stress by increasing the level of heterozygosity. This would require increasing the outbreeding rate of locally adapted breeding materials. As a first step, we estimated the outcrossing rate of 12 barley landraces (Hordeum vulgare ssp. vulgare, in short H. vulgare) and 13 sympatrically occurring populations of its wild progenitor [Hordeum vulgare ssp. spontaneum (C. Koch), in short H. spontaneum] collected from semi-arid localities in Jordan during the 1999/2000 growing season. In each H. vulgare or H. spontaneum population 28–48 spikes were sampled, and up to six offspring (seeds) per spike (called a family) were used for PCR analyses. Collection sites covered high–low transects for rainfall and altitude in order to detect possible environmental effects on the outcrossing rate. Four microsatellite markers located on different chromosomes were used to genotype the samples for estimating the outcrossing rate. Low season-specific multilocus outcrossing rates (tm) were found in both cultivated and wild barley, ranging among populations from 0–1.8% with a mean of 0.34%. Outcrossing rates based on inbreeding equilibrium (te), indicating outcrossing averaged across years, were two- to threefold higher than the season-specific estimates. Under high rainfall conditions somewhat higher—though not significantly higher—outcrossing rates were observed in H. spontaneum than in H. vulgare. The season-specific outcrossing rate in H. spontaneum was positively correlated (r=0.67, P=0.01) with average annual precipitation and negatively correlated (r=0.59, P=0.05) with monthly average temperature during flowering. The results suggest that outcrossing may vary considerably among seasons and that high precipitation and cool temperatures during flowering tend to enhance outcrossing. The rather low levels of outcrossing detected indicate that increased vigour due to heterozygosity has not been a major fitness advantage in the evolution and domestication of H. spontaneum and H. vulgare, respectively. Stable seed production to secure survival under extreme heat and drought stress may have been more important. Cleistogamy may be considered as an effective mechanism to warrant pollination even in drought-stunted plants with non-extruding spikes.  相似文献   

7.
A high-density genetic map was developed from an F1-derived doubled haploid population generated from a cross between cultivated barley (Hordeum vulgare) and the subspecies H. vulgare ssp. spontaneum. The map comprises 1,000 loci, amplified using 536 SSR (558 loci) and 442 DArT markers. Of the SSRs, 149 markers (153 loci) were derived from barley ESTs, and 7 from wheat ESTs. A high level of polymorphism (∼70%) was observed, which facilitated the mapping of 197 SSRs for which genetic assignments had not been previously reported. Comparison with a published composite map showed a high level of co-linearity and telomeric coverage on all seven chromosomes. This map provides access to previously unmapped SSRs, improved genome coverage due to the integration of DArT and EST-SSRs and overcomes locus order issues of composite maps constructed from the alignment of several genetic maps. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The accession PI466197 of wild barley (Hordeum vulgare ssp. spontaneum) with a newly identified resistance to powdery mildew caused by Blumeria graminis f.sp. hordei was studied with the aim to localise the genes determining resistance on a barley genetic map using DNA markers. Molecular analysis was performed in the F2 population of the cross between the winter variety ‘Tiffany’ and the resistant accession PI466197, consisting of 113 plants. DNA markers, 17 simple sequence repeats (SSRs), four sequence-tagged sites (STSs) and one cleaved amplified polymorphic sequence (CAPS) marker developed from the Mla locus sequence were used for genetic mapping and a two-locus model of resistance was shown. One of the resistance genes originating from H. vulgare ssp. spontaneum PI466197 was localised between the markers RGH1aE1 and Bmac0213 on the short arm of chromosome 1H, which is the position consistent with the Mla locus. The other gene was proven to be highly significantly linked with GBMS247, Bmac0134 and MWG878 on the short arm of chromosome 2H. The flanking markers were Bmac0134 and MWG878, assigned 4 and 8 cM from the resistance gene, respectively. Until now, no gene conferring powdery mildew resistance originating from H. vulgare has been located on the short arm of barley chromosome 2H.  相似文献   

9.
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high‐quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high‐confidence protein‐coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single‐copy plant genes, illustrating that the gene‐containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1‐specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.  相似文献   

10.
11.
Genetic diversity and structure of populations of the wild progenitor of barley, Hordeum spontaneum, from three countries, Israel, Turkey and Iran, in the Near East Fertile Crescent, are compared and contrasted. The analysis is based on electrophoretically discernible allozymic variation in proteins encoded by 27 shared loci in 2125 individuals representing 52 populations of wild barley. The results indicate that: (a) H. spontaneum in the Near East Fertile Crescent is very variable genetically; (b) genetic differentiation of populations includes some clinal but primarily regional and local patterns often displaying sharp geographic differentiation over short distances; (c) the average relative genetic differentiation (Gst) was 54% within populations, 39% among populations, and 8% between the three countries; (d) allele distribution is characterized by a high proportion of unique alleles (51%), and a high proportion of common alleles that are distributed either locally or sporadically; (e) discriminant analysis by allele frequencies successfully clustered wild barley of each of the three countries (96% correct classification); (f) a substantial portion of the patterns of allozyme variation in the wild gene pool is significantly correlated with the environment and is predictable ecologically, chiefly by a combination of humidity and temperature variables; (g) natural populations of wild barley are, on the average, more variable than two composite crosses and land races of cultivated barley. The spatial patterns and environmental correlates and predictors of genetic variation of H, spontaneum in the Fertile Crescent indicate that genetic variation in wild barley populations is not only rich but at least partly adaptive and predictable by ecology and allozyme markers. Consequently, conservation and utilization programmes should optimize sampling strategies by following the ecological-genetic factors and allozyme markers as effectively predictive guidelines.  相似文献   

12.
Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral.  相似文献   

13.
Genetic diversity among wild and cultivated barley as revealed by RFLP   总被引:4,自引:0,他引:4  
Genetic variability of cultivated and wild barley, Hordeum vulgare ssp. vulgare and spontaneum, respectively, was assessed by RFLP analysis. The material consisted of 13 European varietes, single-plant offspring lines of eight land races from Ethiopia and Nepal, and five accessions of ssp. spontaneum from Israel, Iran and Turkey. Seventeen out of twenty-one studied cDNA and gDNA probes distributed across all seven barley chromosomes revealed polymorphism when DNA was digested with one of four restriction enzymes. A tree based on genetic distances using frequencies of RFLP banding patterns was estimated and the barley lines clustered into five groups reflecting geographical origin. The geographical groups of land-race lines showed less intragroup variation than the geographical groups of spontaneum lines. The group of European varieties, representing large variation in agronomic traits, showed an intermediate level. The proportion of gene diversity residing among geographical groups (FST) varied from 0.19 to 0.94 (average 0.54) per RFLP pattern, indicating large diversification between geographical groups.  相似文献   

14.
The origin of six-rowed cultivated barley has been revealed to be more complex since the discovery of agriocrithon, a six-rowed barley with brittle rachis. The present study investigates whether such six-rowed brittle barley is wild or hybrid in nature, by analyzing genetic diversity at the cMWG699 marker locus, which is closely linked to the vrs1 (six-row gene) locus. DNA sequence analysis for 42 accessions showed only three types in six-rowed brittle barleys; in contrast, nine sequence types were found in ten wild barleys, ssp. spontaneum, in our previous study. Nucleotide diversities for the six-rowed brittle barley were 2.8–4.5 times lower than that for the ssp. spontaneum at this marker locus. The three sequence types found in the six-rowed brittle barley also appeared in the six-rowed cultivated barley. A cross-allelism test confirmed that the six-rowed character of the six-rowed brittle barley was controlled by the vrs1 locus. The nucleotide diversity and genealogy demonstrated that f. agriocrithon does not have the same level of diversity as found in wild barley, ssp. spontaneum. Consequently, f. agriocrithon does not appear to represent genuinely wild populations, but more probably originated from hybridization between ssp. spontaneum and six-rowed cultivated barley.  相似文献   

15.
Five barley chloroplast DNA microsatellites (cpSSRs) were used to study genetic relationships among a set of 186 barley accessions—34 Hordeum vulgare ssp. spontaneum (HS accessions) from Morocco, Ethiopia, Cyprus, Crete, Libya, Iraq, Iran, Turkey, Afghanistan and Israel, 122 H. vulgare ssp. vulgare landraces (HV landraces) from Spain, Bolivia (old Spanish introductions), Morocco, Libya and Ethiopia and 20 modern European spring barleys (HV cultivars). All loci were polymorphic in the material studied, with the number of alleles per locus ranging from two to three. Fifteen multi-locus haplotypes were observed, 11 in HS accessions and seven in HV landraces and cultivars. Of the seven haplotypes found in the HV lines, three were shared with the HS accessions, and four were unique. Cluster analysis revealed two main groups, one consisting of HS accessions from Ethiopia and the HV landraces from Spain, Bolivia (old Spanish), Morocco and Ethiopia, whereas the other larger group contained all of the other accessions studied. Based on these grouping and the existence of haplotypes found in the HV landraces and cultivars but not in the HS wild barley, a polyphyletic origin is proposed for barley, with further centres of origin in Ethiopia and the Western Mediterranean.  相似文献   

16.
Rhynchosporium commune was recently introduced into the Middle East, presumably with the cultivated host barley (Hordeum vulgare). Middle Eastern populations of R. commune on cultivated barley and wild barley (H. spontaneum) were genetically undifferentiated and shared a high proportion of multilocus haplotypes. This suggests that there has been little selection for host specialization on H. spontaneum, a host population often used as a source of resistance genes introduced into its domesticated counterpart, H. vulgare. Low levels of pathogen genetic diversity on H. vulgare as well as on H. spontaneum, indicate that the pathogen was introduced recently into the Middle East, perhaps through immigration on infected cultivated barley seeds, and then invaded the wild barley population. Although it has not been documented, the introduction of the pathogen into the Middle East may have a negative influence on the biodiversity of native Hordeum species.  相似文献   

17.
Fusarium head blight (FHB) is a threat to barley (Hordeum vulgare L.) production in many parts of the world. A number of barley accessions with partial resistance have been reported and used in mapping experiments to identify quantitative trait loci (QTL) associated with FHB resistance. Here, we present a set of barley germplasm that exhibits FHB resistance identified through screening a global collection of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) accessions. Seventy-eight accessions were classified as resistant or moderately resistant. The collection of FHB resistant accessions consists of 5, 27, 46 of winter, wild and spring barley, respectively. The population structure and genetic relationships of the germplasm were investigated with 1,727 Diversity Array Technology (DArT) markers. Multiple clustering analyses suggest the presence of four subpopulations. Within cultivated barley, substructure is largely centered on spike morphology and growth habit. Analysis of molecular variance indicated highly significant genetic variance among clusters and within clusters, suggesting that the FHB resistant sources have broad genetic diversity. The haplotype diversity was characterized with DArT markers associated with the four FHB QTLs on chromosome 2H bin8, 10 and 13 and 6H bin7. In general, the wild barley accessions had distinct haplotypes from those of cultivated barley. The haplotype of the resistant source Chevron was the most prevalent in all four QTL regions, followed by those of the resistant sources Fredrickson and CIho4196. These resistant QTL haplotypes were rare in the susceptible cultivars and accessions grown in the upper Midwest USA. Some two- and six-rowed accessions were identified with high FHB resistance, but contained distinct haplotypes at FHB QTLs from known resistance sources. These germplasm warrant further genetic studies and possible incorporation into barley breeding programs.  相似文献   

18.
Previous work identified the wild barley (Hordeum vulgare ssp. spontaneum) accession CPI-71284-48 as being capable of limiting sodium (Na+) accumulation in the shoots under saline hydroponic growth conditions. Quantitative trait locus (QTL) analysis using a cross between CPI-71284-48 and a selection of the cultivated barley (H. vulgare ssp. vulgare) cultivar Barque (Barque-73, a moderate Na+ excluder) attributed the control of the Na+ exclusion trait from CPI-71284-48 to a single locus on the short arm of chromosome 7H, which was named HvNax3. The locus reduced shoot Na+ accumulation by 10–25% in plants grown in 150 mM NaCl. Markers generated using colinearity with rice and Brachypodium, together with the analysis of introgression lines and F2 and F3 families, enabled HvNax3 to be mapped to a 1.3-cM interval. Genes from the corresponding rice and Brachypodium intervals encode 16 different classes of proteins and include several plausible candidates for HvNax3. The potential of HvNax3 to provide a useful trait contributing to salinity tolerance in cultivated barley is discussed.  相似文献   

19.
Non-denaturing FISH (ND-FISH) was used to compare the distribution of four simple sequence repeats (SSRs)—(AG) n , (AAG) n , (ACT) n and (ATC) n —in somatic root tip metaphase spreads of 12 barley (H. vulgare ssp. vulgare) cultivars, seven lines of their wild progenitor H. vulgare ssp. spontaneum, and four lines of their close relative H. bulbosum, to determine whether the range of molecular diversity shown by these highly polymorphic sequences is reflected at the chromosome level. In both, the cultivated and wild barleys, clusters of AG and ATC repeats were invariant. In contrast, clusters of AAG and ACT showed polymorphism. Karyotypes were prepared after the identification of their seven pairs of homologous chromosomes. Variation between these homologues was only observed in one wild accession that showed the segregation of a reciprocal translocation involving chromosomes 5H and 7H. The two subspecies of H. vulgare analysed were no different in terms of their SSRs. Only AAG repeats were found clustered strongly on the chromosomes of all lines of H. bulbosum examined. Wide variation was seen between homologous chromosomes within and across these lines. These results are the first to provide insight into the cytogenetic diversity of SSRs in barley and its closest relatives. Differences in the abundance and distribution of each SSR analysed, between H. vulgare and H. bulbosum, suggest that these species do not share the same H genome, and support the idea that these species are not very closely related. Southern blotting experiments revealed the complex organization of these SSRs, supporting the findings made with ND-FISH.  相似文献   

20.
Advanced backcross QTL (AB-QTL) analysis was deployed to identify allelic variation in wild barley (Hordeum vulgare ssp. spontaneum) of value in the improvement of grain yield and other agronomically important traits in barley (Hordeum vulgare ssp. vulgare) grown under conditions of water deficit in Mediterranean countries. A population of 123 double haploid (DH) lines obtained from BC1F2 plants derived from a cross between Barke (European two-row cultivar) and HOR11508 (wild barley accession) were tested in replicated field trials, under varying conditions of water availability in Italy, Morocco and Tunisia, for seven quantitative traits. Significant QTL effects at one (P 0.001) or more trial sites (P 0.01) were identified for all traits. At 42 (52%) of the 80 putative QTLs identified, the allele increasing a “traits' value” was contributed by H. spontaneum. For example, though the majority (67%) of QTL alleles increasing grain yield were contributed by H. vulgare, H. spontaneum contributed the alleles increasing grain yield at six regions on chromosomes 2H, 3H, 5H and 7H. Among them, two QTLs (associated to Bmac0093 on chromosome 2H and to Bmac0684 on chromosome 5H) were identified in all three locations and had the highest additive effects. The present study shows the validity of deploying AB-QTL analysis for identifying favourable QTL alleles from wild germplasm and indicates its potential as an enhancement strategy for the genetic improvement of cultivars better adapted to drought-prone environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号