首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Background The role of co-stimulation in CD4+ T cell activation by professional APC is well established, while less is known of the role co-stimulation plays when CD4+ T cells interact directly with tumor cells. Methods Through genetic engineering of human CD4+ T cells, we tested the hypothesis that integration of co-stimulatory signaling domains within a tumor-targeting chimeric Ag receptor (CAR), the IL-13Ralpha2-specific IL-13-zetakine (IL13zeta), would enhance CD4+ T cell mediated responses against tumors that fail to express ligands for co-stimulatory receptors. Results Compared with CD3zeta-mediated activation alone, CD4+ effector T cells expressing the IL13-CD28-41BBzeta CAR exhibited augmented/sustained MAPK and AKT activity, up-regulated Th1 cytokine production, and enhanced cytolytic potency against tumor targets. Moreover, upon recursive stimulation with tumor, the IL13-CD28-41BBzeta+ cells retained/recycled their lytic function, whereas IL-13zeta+ CD4+ cells became anergic/exhausted. These in vitro observations correlated with enhanced in vivo control of established orthotopic CNS glioma xenografts in immunodeficient mice mediated by adoptively transferred ex vivo-expanded CD4+ T cells expressing the co-stimulatory CAR. Discussion Together these studies demonstrate the importance of integrating co-stimulation with CD3zeta signaling events to activate fully CD4+ anti-tumor effector cells for sustained function in the tumor microenvironment.  相似文献   

2.
IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis. In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is tumor and therapy dependent.  相似文献   

3.
The genetic transfer of antigen receptors provides a means to rapidly generate autologous tumor-reactive T lymphocytes. However, recognition of tumor antigens by cytotoxic T cells is only one step towards effective cancer immunotherapy. Other crucial biological prerequisites must be fulfilled to expand tumor-reactive T cells that retain a functional phenotype, including in vivo cytolytic activity and the ability to travel to tumor sites without prematurely succumbing to apoptosis. We show that these requirements are met by expanding peripheral blood T cells genetically targeted to the CD19 antigen in the presence of CD80 and interleukin-15 (IL-15). T cells expanded in the presence of IL-15 uniquely persist in tumor-bearing severe combined immunodeficiency (SCID)-Beige mice and eradicate disseminated intramedullary tumors. Their anti-tumor activity is further enhanced by in vivo co-stimulation. In addition, transduced T cells from patients with chronic lymphocytic leukemia (CLL) effectively lyse autologous tumor cells. These findings strongly support the clinical feasibility of this therapeutic strategy.  相似文献   

4.
Antitumor and antimetastatic activity of IL-23   总被引:17,自引:0,他引:17  
The structure and T cell stimulatory effects of the recently discovered cytokine IL-23 are similar to, but distinct from, those of IL-12. Although the antitumor activities of IL-12 are well characterized, the effect of IL-23 on tumor growth is not known. In this study, murine CT26 colon adenocarcinoma and B16F1 melanoma cells were engineered using retroviral vectors to release single-chain IL-23 (scIL-23) to evaluate its antitumor activity. In BALB/c mice, scIL-23-transduced CT26 cells grew progressively until day 26 to an average size of 521 +/- 333 mm(3), then the tumors started to regress in most animals, resulting in a final 70% rate of complete tumor rejection. scIL-23 transduction also significantly suppressed lung metastases of CT26 and B16F1 tumor cells. In addition, mice that rejected scIL-23-transduced tumors developed a memory response against subsequent wild-type tumor challenge. Compared with scIL-12-expressing CT26 cells, scIL-23-transduced tumors lacked the early response, but achieved comparable antitumor and antimetastatic activity. These results demonstrated that IL-23, like IL-12, provided effective protection against malignant diseases, but it probably acted by different antitumor mechanisms. As a first step in identifying these antitumor mechanisms, tumor challenge studies were performed in immunocompromised hosts and in animals selectively depleted of various lymphocyte populations. The results showed that CD8(+) T cells, but not CD4(+) T cells or NK cells, were crucial for the antitumor activity of IL-23.  相似文献   

5.
Kurooka M  Kaneda Y 《Uirusu》2007,57(1):19-27
Ultraviolet-inactivated, replication-defective Sendai virus particles (Hemagglutinating virus of Japan envelope, HVJ-E) injected into murine colon carcinoma (CT26) tumors growing in syngeneic Balb/c mice eradicated 60-80% of the tumors and obviously inhibited the growth of the remainder. Induced adaptive anti-tumor immune responses were dominant in the tumor eradication process because the effect was abrogated in severe combined immunodeficient (SCID) mice. Murine and human dendritic cells (DCs) underwent dose-dependent maturation by HVJ-E in vitro. Profiles of cytokines secreted by DCs after HVJ-E stimulation showed that the amount of IL-6 released was comparable to that elicited by live HVJ. Real-time RT-PCR and immunohistochemistry revealed that HVJ-E induced a remarkable infiltration of DCs, CD4+ and CD8+ T cells into tumors and CT26 specific cytotoxic T lymphocytes (CTL) were induced. On the other hand, conditioned medium from DCs stimulated by HVJ-E (H-DCCM) rescued CD4+CD25- effector T cell proliferation from Foxp3+CD4+CD25+ regulatory T cell (Treg) mediated suppression and IL-6 was presumably dominant for this phenomenon. We also confirmed such rescue in mice treated with HVJ-E in vivo. Moreover, anti-tumor effect of HVJ-E was significantly reduced by an in vivo blockade of IL-6 signaling. Depending on cancer cell types, it is also expected that HVJ-E eradicates tumor by its direct cytotoxity against cancer cells or activating NK cells. Because it can enhance anti-tumor immunity and simultaneously remove Treg mediated suppression, HVJ-E shows promise as a novel therapeutic for cancer immunotherapy.  相似文献   

6.
Combined immunotherapy with cyclophosphamide (Cy) and IL-12, but not IL-12 alone, stimulates eradication of a large established solid tumor (20 mm), MCA207, a methylcholanthrene-induced murine sarcoma. In these studies we demonstrate that NK1.1(+) cells and CD1d-dependent NK T cells each play important yet distinct roles in regression of a large tumor in response to Cy and IL-12, and we define a novel NK T cell subset, selectively increased by this treatment. Mice depleted of NK1.1(+) cells demonstrated more rapid initial tumor growth and prolonged tumor regression following treatment, but tumors were eventually eradicated. In contrast, initial tumor regression following therapy was unimpaired in CD1d(-/-) mice, which are deficient in most NK T cells, but tumors recurred. No tumor regression occurred following Cy and IL-12 therapy in CD1d(-/-) mice that were depleted of NK1.1(+) cells. We found that Cy and IL-12 induced the selective increase in liver and spleen lymphocytes of a unique NK T subpopulation (DX5(+)NK1.1(-)CD3(+)). These cells were not induced by treatment in CD1d(-/-) mice. Our studies demonstrate a contribution of both NK and NK T cells to the Cy- and IL-12-stimulated anti-tumor response. We describe the selective induction of a distinct NK T cell subset by Cy and IL-12 therapy, not seen following IL-12 therapy alone, which we suggest may contribute to the successful anti-tumor response induced by this immunotherapeutic regimen.  相似文献   

7.
Technical difficulties in tracking endogenous CD4 T lymphocytes have limited the characterization of tumor-specific CD4 T cell responses. Using fluorescent MHC class II/peptide multimers, we defined the fate of endogenous Leishmania receptor for activated C kinase (LACK)-specific CD4 T cells in mice bearing LACK-expressing TS/A tumors. LACK-specific CD44(high)CD62L(low) CD4 T cells accumulated in the draining lymph nodes and had characteristics of effector cells, secreting IL-2 and IFN-gamma upon Ag restimulation. Increased frequencies of CD44(high)CD62L(low) LACK-experienced cells were also detected in the spleen, lung, liver, and tumor itself, but not in nondraining lymph nodes, where the cells maintained a naive phenotype. The absence of systemic redistribution of LACK-specific memory T cells correlated with the presence of tumor. Indeed, LACK-specific CD4 T cells with central memory features (IL-2(+)IFN-gamma(-)CD44(high)CD62L(high) cells) accumulated in all peripheral lymph nodes of mice immunized with LACK-pulsed dendritic cells and after tumor resection. Together, our data demonstrate that although tumor-specific CD4 effector T cells producing IFN-gamma are continuously generated in the presence of tumor, central memory CD4 T cells accumulate only after tumor resection. Thus, the continuous stimulation of tumor-specific CD4 T cells in tumor-bearing mice appears to hinder the systemic accumulation of central memory CD4 T lymphocytes.  相似文献   

8.
This study shows that removal of a T cell subpopulation can evoke effective tumor immunity in otherwise nonresponding animals. Elimination of CD25-expressing T cells, which constitute 5-10% of peripheral CD4+ T cells in normal naive mice, elicited potent immune responses to syngeneic tumors in vivo and eradicated them. The responses were mediated by tumor-specific CD8+ CTLs and tumor-nonspecific CD4-8- cytotoxic cells akin to NK cells. Furthermore, in vitro culture of CD25+4+ T cell-depleted splenic cell suspensions prepared from tumor-unsensitized normal mice led to spontaneous generation of similar CD4-8- cytotoxic cells capable of killing a broad spectrum of tumors; reconstitution of CD25+4+ T cells inhibited the generation. In this culture, self-reactive CD25-4+ T cells responding to self peptides/class II MHC complexes on APCs spontaneously proliferated upon removal of CD25+4+ T cells, secreting large amounts of IL-2. The IL-2 thus produced appeared to be responsible for the generation of CD4-8- NK cells as lymphokine-activated killer cells, because direct addition of an equivalent amount of IL-2 to the culture of CD4-8- cells generated similar lymphokine-activated killer/NK cells, whereas coculture of normal CD4-8- cells with CD25-4+ T cells from IL-2-deficient mice did not. Thus, removal of immunoregulatory CD25+4+ T cells can abrogate immunological unresponsiveness to syngeneic tumors in vivo and in vitro, leading to spontaneous development of tumor-specific effector cells as well as tumor-nonspecific ones. This novel way of evoking tumor immunity would help to devise effective immunotherapy for cancer in humans.  相似文献   

9.
Previous studies by others using transplantable murine tumor models have demonstrated that the administration of antibodies that block CTLA-4 interaction with B7 can provoke the elimination of established tumors, and that the tumor suppression is mediated by T-cells and/or cells expressing NK1.1. Studies from our lab have established in a human/severe combined immunodeficient (SCID) mouse chimeric model that autologous peripheral blood leukocytes (PBL) can suppress the growth of tumor xenografts in a PBL dose-dependent fashion, and that this suppression is dependent upon the patients T and NK cells. Using this human/mouse chimeric model, we sought to determine whether an antibody blockade of CTLA-4 would enhance the anti-tumor response of a patients PBL. It was first important to determine whether the tumor suppression observed in the SCID model was dependent upon CD28/B7 co-stimulation. Blockade of B7 with a human CTLA-4-Ig fusion protein completely abrogated the lymphocyte-mediated tumor suppression, confirming in this model that tumor suppression is dependent upon a CD28/B7 co-stimulation. Using two different CTLA-4 specific monoclonal antibodies, we observed that CTLA-4 blockade significantly enhanced the human lymphocyte-mediated tumor suppression in mice co-engrafted with PBL and tumor cells. This enhancement was observed in both an allogeneic setting (in which the PBL were allogeneic with respect to the tumor) and an autologous setting (in which the PBL and tumor were from the same patient). These results sustain the notion that human anti-tumor immune response can be augmented (in vivo) by blocking the interaction between CTLA-4 and B7.  相似文献   

10.
Peritoneal resident cells of mice normally contain small populations of NK cells and NK1.1(+) alphabetaT cells. These populations increased after either 3LL or EL4 tumor inoculations into the peritoneal cavity. In vivo depletion of NK cell alone by anti-asialo GM1 (ASGM1) Ab significantly decreased survival time of tumor-injected mice, while depletion of both NK cells and NK1.1(+) T cells by anti-NK 1.1 Ab greatly shortened mouse survival time. NK1. 1(+) T cells in peritoneal cavity consist of a larger proportion of double-negative T cells and smaller populations of CD4(+) T cells and Vbeta8(+) T cells compared with liver NK1.1(+) T cells and normally lack Vbeta2(+) T cells. Tumor inoculation induced rapid IL-12 and IFN-gamma mRNA in tumor-infiltrating mononuclear cells (TIM). Although anti-NK1 Ab pretreatment in vivo abrogated IFN-gamma mRNA expression and IFN-gamma production of TIM, NK cell depletion alone by anti-ASGM1 Ab pretreatment retained IFN-gamma mRNA expression and partly inhibited IFN-gamma production of TIM. Peritoneal NK cells as well as NK1.1(+) T cells but not NK1.1(-) T cells of 3LL cell- or EL4 cell-injected mice showed cytotoxicities against the same tumor cells. Further, either anti-IL-12 Ab or anti-IFN-gamma Ab ip injection significantly shortened EL4 cell-inoculated mouse survival time. Our findings suggest that peritoneal macrophages activated by tumors produce IL-12 which activates NK cells and NK1.1(+) T cells to produce IFN-gamma and both NK cells and NK1.1(+) T cells are important in suppressing the growth of the intraperitoneal tumors.  相似文献   

11.
Interleukin-12 (IL-12) can promote tumor regression via activation of multiple lymphocytic and myelocytic effectors. Whereas the cytotoxic mechanisms employed by T/NK/NKT cells in IL-12-mediated tumor kill are well defined, the antitumor role of macrophage-produced cytotoxic metabolites has been more controversial. To this end, we investigated the specific role of nitric oxide (NO), a major macrophage effector molecule, in post-IL-12 tumor regression. Analysis of tumors following a single intratumoral injection of slow-release IL-12 microspheres showed an IFNγ-dependent sevenfold increase in inducible nitric oxide synthase (iNOS) expression within 48 h. Flow cytometric analysis of tumor-resident leukocytes and in vivo depletion studies identified CD11b+ F4/80+ Gr1lo macrophages as the primary source of iNOS. Blocking of post-therapy iNOS activity with N-nitro-l-arginine methyl ester (L-NAME) dramatically enhanced tumor suppression revealing the inhibitory effect of NO on IL-12-driven antitumor immunity. Superior tumor regression in mice receiving combination treatment was associated with enhanced survival and proliferation of activated tumor-resident CD8+ T-effector/memory cells (Tem). These findings demonstrate that macrophage-produced NO negatively regulates the antitumor activity of IL-12 via its detrimental effects on CD8+ T cells and identify L-NAME as a potent adjuvant in IL-12 therapy of cancer.  相似文献   

12.
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4(+) and CD8(+) T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1(-/-) mice or in mice depleted of CD4(+) and/or CD8(+) cells than in normal mice. The tumors in RAG1(-/-) mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.  相似文献   

13.
We recently reported that the CD4(+) T cell subset with low L-selectin expression (CD62L(low)) in tumor-draining lymph nodes (TDLN) can be culture activated and adoptively transferred to eradicate established pulmonary and intracranial tumors in syngeneic mice, even without coadministration of IL-2. We have extended these studies to characterize the small subset of L-selectin(low) CD8(+) T cells naturally present in TDLN of mice bearing weakly immunogenic tumors. Isolated L-selectin(low) CD8(+) T cells displayed the functional phenotype of helper-independent T cells, and when adoptively transferred could consistently eradicate, like L-selectin(low) CD4(+) T cells, both established pulmonary and intracranial tumors without coadministration of exogenous IL-2. Whereas adoptively transferred L-selectin(low) CD4(+) T cells were more potent on a cell number basis for eradicating 3-day intracranial and s.c. tumors, L-selectin(low) CD8(+) T cells were more potent against advanced (10-day) pulmonary metastases. Although the presence of CD4(+) T cells enhanced generation of L-selectin(low) CD8(+) effector T cells, the latter could also be obtained from CD4 knockout mice or normal mice in vivo depleted of CD4(+) T cells before tumor sensitization. Culture-activated L-selectin(low) CD8(+) T cells did not lyse relevant tumor targets in vitro, but secreted IFN-gamma and GM-CSF when specifically stimulated with relevant tumor preparations. These data indicate that even without specific vaccine maneuvers, progressive tumor growth leads to independent sensitization of both CD4(+) and CD8(+) anti-tumor T cells in TDLN, phenotypically L-selectin(low) at the time of harvest, each of which requires only culture activation to unmask highly potent stand-alone effector function.  相似文献   

14.
Interleukin-15 (IL-15) in vitro treatment of peripheral blood mononuclear cells (PBMC) from human immunodeficiency virus (HIV)-infected individuals specifically enhances the function and survival of HIV-specific CD8+ T cells, while in vivo IL-15 treatment of mice preferentially expands memory CD8+ T cells. In this study, we investigated the in vivo effect of IL-15 treatment in 9 SIVmac251-infected cynomolgus macaques (low dose of IL-15, 10 microg/kg of body weight, n = 3; high dose of IL-15, 100 microg/kg, n = 3; control [saline], n = 3; dose administered twice weekly for 4 weeks). IL-15 treatment induced a nearly threefold increase in peripheral blood CD8+CD3- NK cells. Furthermore, CD8+ T-cell numbers increased more than twofold, mainly due to an increase in the CD45RA-CD62L- and CD45RA+CD62L- effector memory CD8+ T cells. Expression of Ki-67 in the CD8+ T cells indicated expansion of CD8+ T cells and not redistribution. IL-15 did not affect CD4+ T-cell, B-cell, and CD14+ macrophage numbers. No statistically significant differences in changes from baseline in the viral load were observed when control-, low-dose-, and high-dose-treated animals were compared. No clinical adverse effects were observed in any of the animals studied. The selective expansion of effector memory CD8+ T cells and NK cells by IL-15 further supports IL-15's possible therapeutic use in viral infections such as HIV infection.  相似文献   

15.
Systemic IL-2 is currently employed in the therapy of several tumor types, but at the price of often severe toxicities. Local vector mediated delivery of IL-2 at the tumor site may enhance local effector cell activity while reducing toxicity. To examine this, a model using CEA-transgenic mice bearing established CEA expressing tumors was employed. The vaccine regimen was a s.c. prime vaccination with recombinant vaccinia (rV) expressing transgenes for CEA and a triad of costimulatory molecules (TRICOM) followed by i.t. boosting with rF-CEA/TRICOM. The addition of intratumoral (i.t.) delivery of IL-2 via a recombinant fowlpox (rF) IL-2 vector greatly enhanced anti-tumor activity of a recombinant vaccine, resulting in complete tumor regression in 70–80% of mice. The anti-tumor activity was shown to be dependent on CD8+ cells and NK1.1+. Cellular immune assays revealed that the addition of rF-IL-2 to the vaccination therapy enhanced CEA-specific tetramer+ cell numbers, cytokine release and CTL lysis of CEA+ targets. Moreover, tumor-bearing mice vaccinated with the CEA/TRICOM displayed an antigen cascade, i.e., CD8+ T cell responses to two other antigens expressed on the tumor and not the vaccine: wild-type p53 and endogenous retroviral antigen gp70. Mice receiving rF-IL-2 during vaccination demonstrated higher avidity CEA-specific, as well as higher avidity gp70-specific, CD8+ T cells when compared with mice vaccinated without rF-IL-2. These studies demonstrate for the first time that the level and avidity of antigen specific CTL, as well as the therapeutic outcome can be improved with the use of i.t. rF-IL-2 with vaccine regimens.  相似文献   

16.
17.
In embryo, before the establishment of acquired immunity, a variety of embryonic antigens like alpha-fetoprotein (AFP) are produced and secreted in the sera, which rapidly disappear after the birth. Such embryonic antigens sometimes reappear from various tumor cells and decrease in the case of remission, indicating embryonic antigens may alert immune system to control tumors. In the present study, to examine the evoked immune responses against the tumors expressing embryonic antigen, we administered AFP-gene-transfected EL4 cells into syngeneic C57BL/6 mice and established a killer line against the tumor cells. To our surprise, the killer line was CD4+ NK1.1+, natural killer T (NKT)-like cells and eliminated not only AFP-expressing EL4 but YAC-1 cells. Moreover, the established line uniformly expressed Vbeta11 and secreted IL-4, IL-10, IL-13, and IFN-gamma. In vivo inoculation of the line markedly reduced the tumor growth in SCID mice, suggesting novelty of the NKT-like line for tumor surveillance.  相似文献   

18.
CTLA4Ig has been successfully used in the clinic for suppression of T cell activation. However, patients treated with CTLA4Ig experienced reduced incidence of tumors than predicted, but the underlying mechanism remains unknown. In this paper, we showed that brief administration of CTLA4Ig significantly reduced tumor metastasis and prolonged the survival of host mice bearing B16 melanoma. Depletion of NK cells prior to CTLA4Ig administration eliminated the CTLA4Ig-mediated anti-tumor activity. CTLA4Ig enhanced NK cell cytotoxicity to tumor cells via up-regulation of NK cell effecter molecules CD107a and perforin in vivo. In addition, we demonstrated that, upon activation, NK cells could significantly increase the expression of CD86 both in vitro and in vivo, and ligation of CD86 with CTLA4Ig significantly increased the ability of NK cells to kill tumor cells. Furthermore, a human NK cell line that expressed high level of CD86 was directly activated by CTLA4Ig so that killing of tumor targets was enhanced; this enhanced killing could be inhibited by blocking CD86. Our findings uncover a novel function of CTLA4Ig in tumor immunity and suggest that CD86 on NK cells is an activating receptor and closely involved in the CTLA4Ig-mediated anti-tumor response.  相似文献   

19.
A single intratumoral injection of IL-12 and GM-CSF-loaded slow-release microspheres induces T cell-dependent eradication of established primary and metastatic tumors in a murine lung tumor model. To determine how the delivery of cytokines directly to the microenvironment of a tumor nodule induces local and systemic antitumor T cell activity, we characterized therapy-induced phenotypic and functional changes in tumor-infiltrating T cell populations. Analysis of pretherapy tumors demonstrated that advanced primary tumors were infiltrated by CD4+ and CD8+ T cells with an effector/memory phenotype and CD4+CD25+Foxp3+ T suppressor cells. Tumor-associated effector memory CD8+ T cells displayed impaired cytotoxic function, whereas CD4+CD25+Foxp3+ cells effectively inhibited T cell proliferation demonstrating functional integrity. IL-12/GM-CSF treatment promoted a rapid up-regulation of CD43 and CD69 on CD8+ effector/memory T cells, augmented their ability to produce IFN-gamma, and restored granzyme B expression. Importantly, treatment also induced a concomitant and progressive loss of T suppressors from the tumor. Further analysis established that activation of pre-existing effector memory T cells was short-lived and that both the effector/memory and the suppressor T cells became apoptotic within 4 days of treatment. Apoptotic death of pre-existing effector/memory and suppressor T cells was followed by infiltration of the tumor with activated, nonapoptotic CD8+ effector T lymphocytes on day 7 posttherapy. Both CD8+ T cell activation and T suppressor cell purge were mediated primarily by IL-12 and required IFN-gamma. This study provides important insight into how local IL-12 therapy alters the immunosuppressive tumor milieu to one that is immunologically active, ultimately resulting in tumor regression.  相似文献   

20.
Previously, we reported that the major stress-inducible heat shock protein 70 (Hsp70) acts as a recognition structure for natural killer (NK) cells, if localized on the cell surface of tumor cells. Incubation of purified NK cells with low-dose interleukin (IL)-2 (100 IU/mL) plus recombinant Hsp70-protein or the immunogenic 14-mer Hsp70-peptide TKDNNLLGRFELSG450-463, termed TKD (2 microg/mL), enhances the cytolytic activity against Hsp70 membrane-positive (CX+) but not against Hsp70-negative (CX-) tumor cells. Here, we show that the cytolytic activity against Hsp70-positive tumor cells is inducible by incubation of unseparated peripheral blood mononuclear cells (PBMNC) with low-dose IL-2 plus TKD. Cell sorting experiments revealed that within the PBMNC population CD94(+)/CD3(-) NK cells, and not CD94(-)/CD3(+) T cells, mediate the cytotoxic activity against Hsp70-positive tumor cells. The antitumoral effect of PBMNC stimulated either with IL-2 plus TKD or with IL-2 alone was assessed in tumor-bearing severe combined immunodeficiency/beige mice. A single intravenous (iv) injection of 40 x 10(6) IL-2 plus TKD-stimulated PBMNC (containing 5.2 x 10(6) NK cells) on day 4 results in a 60% reduction in tumor size, from 3.89 g to 1.56 g. In contrast, the adoptive transfer of the identical amount PBMNC stimulated with low-dose IL-2 only (containing 4.4 x 10(8) NK cells) reduces the tumor size only less than 10% (3.64 g). A phenotypic characterization of the excised tumors revealed that predominantly Hsp70-positive tumor cells were eliminated by TKD-activated PBMNC. Kinetic studies demonstrate that the in vivo cytolytic capacity of TKD-stimulated PBMNC is dependent on the effector to target cell ratio. An iv injection of effector cells on day 1 or 2 after tumor cell inoculation results in significantly smaller tumors (0.77 g or 0.89 g) on day 21 as compared with mice that were immunoreconstituted on day 4 or 8 (1.39 g or 2.23 g). The tumor size of nonimmunoreconstituted control animals was 3.55 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号