首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering of cysteine and methionine biosynthesis in potato   总被引:10,自引:0,他引:10  
Summary. Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl group donor in numerous cellular processes. While methionine is an essential amino acid due to an inability of monogastric animals and human beings to synthesise this metabolite, animals are still able to convert methionine consumed with their diet into cysteine. Thus, a balanced diet containing both amino acids is necessary to provide a nutritionally favourable food or feed source. Because the concentrations of methionine and cysteine are often low in edible plant sources, e.g. potato, considerable efforts in plant breeding and research have been and are still performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their synthesis, transport, and accumulation in plants. During the last decade molecular tools have enabled the isolation of most of the genes involved in cysteine and methionine biosynthesis, and the efficient plant transformation technology has allowed the creation of transgenic plants that are altered in the activity of individual genes. The physiological analysis of these transgenic plants has contributed considerably to our current understanding of how amino acids are synthesised. We focused our analysis on potato (Solanum tuberosum cv. Désirée) as this plant provides a clear separation of source and sink tissues and, for applied purposes, already constitutes a crop plant. From the data presented here and in previous work we conclude that threonine synthase and not cystathionine gamma-synthase as expected from studies of Arabidopsis constitutes the main regulatory control point of methionine synthesis in potato. This article aims to cover the current knowledge in the area of molecular genetics of sulfur-containing amino acid biosynthesis and will provide new data for methionine biosynthesis in solanaceous plants such as potato. Received December 19, 2001 Accepted January 7, 2002  相似文献   

2.
Plants can provide most of the nutrients for the human diet. However, the major crops are often deficient in some of the nutrients. Thus, malnutrition, with respect to micronutrients such as vitamin A, iron, and zinc, but also macronutrients such as the essential amino acids lysine and methionine, affects more than 40% of the world's population. Recent advances in molecular biology, but also the grasp of biochemical pathways, metabolic fluxes, and networks can now be exploited to produce crops enhanced in key nutrients to increase the nutritional value of plant-derived foods and feeds. Some of the predictions appear to be accurate, while others not, reflecting the fact that plant metabolism is more complex than presently understood. A good example for a complex regulation is the methionine biosynthetic pathway in plants. The nutritional importance of Met and cysteine has motivated extensive studies of their roles in plant molecular physiology, especially regarding to their transport, synthesis, and accumulation in plants. Recent studies have demonstrated that Met metabolism is regulated differently in various plant species.  相似文献   

3.
Rachel Amir 《Amino acids》2010,39(4):917-931
Methionine is a nutritionally essential, sulfur-containing amino acid found in low levels in plants, which often limits its value as a source of dietary protein to humans and animals. Methionine is also a fundamental metabolite in plant cells since, through its first metabolite, S-adenosylmethionine (SAM), it controls the level of several key metabolites, such as ethylene, polyamines and biotin. SAM is also the primary methyl group donor that regulates different processes in plants. Despite its nutritional and regulatory significance, the factors regulating methionine content in plants are not fully known. In this review, we summarize the current knowledge and recent progress made in our understanding of the methionine metabolism. The enzymes and substrates that regulate methionine synthesis were described, as well as the influences of the catabolic pathways of methionine on its content. The current effort to tailor an improvement of methionine content in vegetative tissues with minimal interference in plant growth and productivity is described as well. The accumulated knowledge has provided new insights into the control of methionine level in plants and, in some cases, has resulted in significant improvements in the nutritional value of plants.  相似文献   

4.
Summary Plants are the primary source of protein for man and livestock, however, not all plants produce proteins which contain a balance of amino acids for the diet to ensure proper growth of livestock and humans. Alteration of the amino acid composition of plants may be accomplished using techniques of molecular biology and genetic engineering. Genes encoding key enzymes regulating the synthesis of lysine and threonine have been cloned from plants andE. coli and are available for modification and transformation into plants. Genes encoding seed storage proteins have been cloned and modified to encode more lysine residues for developing transgenic plants with higher seed lysine. Genes encoding seed storage proteins naturally higher in methionine have been cloned and expressed in transgenic plants, increasing methionine levels of the seed. These and other approaches hold great promise in their application to increasing the content of essential amino acids in plants.Abbreviations: AK = aspartokinase; HSDH = homoserine dehydrogenase; DS = dihydrodipicolinic acid synthase; AEC = S-(2-aminoethyl)-L-cysteineMention of trademark, proprietary product or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may be suitable.  相似文献   

5.
Lysine and methionine are two essential amino acids whose levels affect the nutritional quality of cereals and legume plants. Both amino acids are synthesized through the aspartate family biosynthesis pathway. Within this family, lysine and methionine are produced by two different branches, the lysine branch and the threonine-methionine branch, which compete for the same carbon/amino substrate. To elucidate the relationship between these biosynthetic branches, we crossed two lines of transgenic tobacco plants: one that overexpresses the feedback-insensitive bacterial enzyme dihydrodipicolinate synthase (DHPS) and contains a significantly higher level of lysine, and a second that overexpresses Arabidopsis cystathionine gamma-synthase (AtCGS), the first unique enzyme of methionine biosynthesis. Significantly higher levels of methionine and its metabolite, S-methylmethionine (SMM), accumulated in the newly produced plants compared with plants overexpressing AtCGS alone, while the level of lysine remained the same as in those overexpressing DHPS alone. The increased levels of methionine and SMM were correlated with increases in the mRNA and protein levels of AtCGS and a reduced mRNA level for the genes encoding S-adnosylmethionine (SAM) synthase, which converts methionine to SAM. Reduction in SAMS expression level leads most probably to the reduction of SAM found in plants that feed with lysine. As SAM is a negative regulator of CGS, this reduction leads to higher expression of CGS and consequently to an increased level of methionine. Elucidating the relationship between lysine and methionine synthesis may lead to new ways of producing transgenic crop plants containing increased methionine and lysine levels, thus improving their nutritional quality.  相似文献   

6.
Calprotectin provides nutritional immunity by sequestering manganese and zinc ions. It is abundant in the lungs of patients with cystic fibrosis but fails to prevent their recurrent infections. Calprotectin is a major protein of neutrophils and composed of two monomers, S100A8 and S100A9. We show that the ability of calprotectin to limit growth of Staphylococcus aureus and Pseudomonas aeruginosa is exquisitely sensitive to oxidation by hypochlorous acid. The N-terminal cysteine residue on S100A9 was highly susceptible to oxidation which resulted in cross-linking of the protein monomers. The N-terminal methionine of S100A8 was also readily oxidized by hypochlorous acid, forming both the methionine sulfoxide and the unique product dehydromethionine. Isolated human neutrophils formed these modifications on calprotectin when their myeloperoxidase generated hypochlorous acid. Up to 90% of the N-terminal amine on S100A8 in bronchoalveolar lavage fluid from young children with cystic fibrosis was oxidized. Oxidized calprotectin was higher in children with cystic fibrosis compared to disease controls, and further elevated in those patients with infections. Our data suggest that oxidative stress associated with inflammation in cystic fibrosis will stop metal sequestration by calprotectin. Consequently, strategies aimed at blocking extracellular myeloperoxidase activity should enable calprotectin to provide nutritional immunity within the airways.  相似文献   

7.
王正旋  杨林 《生物信息学》2022,20(3):149-154
蛋氨酸是一种含硫必需氨基酸,在蛋白质组成和新陈代谢中都发挥着独特的作用。蛋氨酸具有内源性抗氧化作用,一方面蛋氨酸在蛋氨酸亚砜还原酶(MSR)作用下通过自身氧化还原反应来发挥内源性抗氧化作用,另一方面蛋氨酸可通过代谢途径(GSH合成、Nrf2抗氧化通路等)来增强内源性抗氧化能力。然而目前缺乏对蛋氨酸抗氧化分子机制全面深入的研究报道。因此,本文在蛋氨酸代谢的基础上,对蛋氨酸促进GSH合成、激活MSR抗氧化系统以及调控Nrf2抗氧化通路的分子机制进行综述,并对GSH合成、MSR与Nrf2抗氧化体系之间的关系进行阐述,为全面解析蛋氨酸内源性抗氧化分子机制提供理论依据。  相似文献   

8.
With the aim of increasing the methionine level in alfalfa (Medicago sativa L.) and thus improving its nutritional quality, we produced transgenic alfalfa plants that expressed the Arabidopsis cystathionine gamma-synthase (AtCGS), the enzyme that controls the synthesis of the first intermediate metabolite in the methionine pathway. The AtCGS cDNA was driven by the Arabidopsis rubisco small subunit promoter to obtain expression in leaves. Thirty transgenic plants were examined for the transgene protein expression, and four lines with a high expression level were selected for further work. In these lines, the contents of methionine, S-methylmethionine (SMM), and methionine incorporated into the water-soluble protein fraction increased up to 32-fold, 19-fold, and 2.2-fold, respectively, compared with that in wild-type plants. Notably, in these four transgenic lines, the levels of free cysteine (the sulphur donor for methionine synthesis), glutathione (the cysteine storage and transport form), and protein-bound cysteine increased up to 2.6-fold, 5.5-fold, and 2.3-fold, respectively, relative to that in wild-type plants. As the transgenic alfalfa plants over-expressing AtCGS had significantly higher levels of both soluble and protein-bound methionine and cysteine, they may represent a model and target system for improving the nutritional quality of forage crops.  相似文献   

9.
The nutritional value of various crops can be improved by engineering plants to produce high levels of proteins. For example, because methionine deficiency limits the protein quality of Medicago Sativa (alfalfa) forage, producing alfalfa plants that accumulate high levels of a methionine‐rich protein could increase the nutritional value of that crop. We used three strategies in designing methionine‐rich recombinant proteins that could accumulate to high levels in plants and thereby serve as candidates for improving the protein quality of alfalfa forage. In tobacco, two fusion proteins, γ‐gliadin‐δ‐zein and γ‐δ‐zein, as well as δ‐zein co‐expressed with β‐zein, all formed protein bodies. However, the γ‐gliadin‐δ‐zein fusion protein accumulated to the highest level, representing up to 1.5% of total soluble protein (TSP) in one transformant. In alfalfa, γ‐gliadin‐δ‐zein accumulated to 0.2% of TSP, and in an in vitro rumen digestion assay, γ‐gliadin‐δ‐zein was more resistant to microbial degradation than Rubisco. Additionally, although it did not form protein bodies, a γ‐gliadin‐GFP fusion protein accumulated to much higher levels, 7% of TSP, than a recombinant protein comprised of an ER localization signal fused to GFP in tobacco. Based on our results, we conclude that γ‐gliadin‐δ‐zein is a potential candidate protein to use for enhancing methionine levels in plants and for improving rumen stability of forage protein. γ‐gliadin fusion proteins may provide a general platform for increasing the accumulation of recombinant proteins in transgenic plants.  相似文献   

10.
In vitro selection was carried out to obtain ethionine-resistant plants with increased contents of free methionine in the vegetative tissues of the forage legume Astragalus adsurgens Pall. Three-week-old cell colonies were derived from protoplasts mutagenized with N-methyl-N-nitrosoguanidine from embryogenic callus and were selected with 0.6mM ethionine. Four colony lines were isolated and their resistance to ethionine was 7–8 times that of the wild-type callus. No plant regeneration occurred on these colony lines in the differentiation medium containing ethionine. Only one colony line (R-1) regenerated plants through somatic embryogenesis in the absence of ethionine. Stem and leaf segments from the regenerated plants showed the same potential to produce callus in the presence of ethionine as in the absence of ethionine. The formed callus kept continuously growing in ethionine-containing medium. Free amino acid analysis revealed that colony line R-1, its regenerated plants and callus from the regenerated plants accumulated methionine at levels at 5–9 times higher than in wild-type. These results suggested that ethionine resistance and methionine over-accumulation were also expressed at plant level. Thus, the obtained resistant colony line that could regenerate plants with over-accumulation of methionine might provide an alternative approach to improve the nutritional quality of this forage.  相似文献   

11.
Lysine metabolism in higher plants   总被引:4,自引:0,他引:4  
Azevedo RA  Lea PJ 《Amino acids》2001,20(3):261-279
Summary. The essential amino acid lysine is synthesised in higher plants via a pathway starting with aspartate, that also leads to the formation of threonine, methionine and isoleucine. Enzyme kinetic studies and the analysis of mutants and transgenic plants that overaccumulate lysine, have indicated that the major site of the regulation of lysine synthesis is at the enzyme dihydrodipicolinate synthase. Despite this tight regulation, there is strong evidence that lysine is also subject to catabolism in plants, specifically in the seed. The two enzymes involved in lysine breakdown, lysine 2-oxoglutarate reductase (also known as lysine α-ketoglutarate reductase) and saccharopine dehydrogenase exist as a single bifunctional protein, with the former activity being regulated by lysine availability, calcium and phosphorylation/dephosphorylation. Received December 21, 1999 Accepted February 7, 2000  相似文献   

12.
In order to study the regulation of threonine and methionine synthesis in plant seeds, tobacco plants were transformed with a chimeric gene containing the coding DNA sequence of a mutant lysC gene from Escherichia coli fused to a promoter from a phaseolin seed storage protein gene. The bacterial mutant lysC gene codes for aspartate kinase (AK) which is desensitized to feedback inhibition by lysine and threonine. Increased AK activity, compared with control non-transformed plants, was detected in seeds but not in leaves, roots and flowers of the transgenic plants. This expression was accompanied by a significant increase in the levels of free threonine and methionine in the seed. The level of these amino acids also correlated positively with the levels of the bacterial enzyme. No alteration in plant phenotype and 'average seed weight' was observed in any of the transgenic plants, indicating that plant growth and seed development were normal. This study demonstrates, for the first time, that the threonine and methionine biosynthetic pathways are active in plant seeds. Thus, targeting of the production of favorable biosynthetic enzymes to plant seeds may represent a desirable molecular approach for production of crop plants with a more balanced nutritional quality.  相似文献   

13.
14.
In proteins, methionine residues are especially sensitive to oxidation, leading to the formation of S- and R-methionine sulfoxide diastereoisomers, and these two methionine sulfoxides can be specifically reversed by two types of methionine sulfoxide reductases (MSRs), MSRA and MSRB. Previously, we have identified a gene encoding a putative MSR from NaCl-treated roots of Brazilian upland rice (Oryza sativa L. cv. IAPAR 9) via subtractive suppression hybridization (Wu et al. in Plant Sci 168:847–853, 2005). Blast database analysis indicated that at least four MSRA and three MSRB orthologs exist in rice, and two of them, OsMSRA4.1 and OsMSRB1.1, were selected for further functional analysis. Expression analysis showed that both OsMSRA4.1 and OsMSRB1.1 are constitutively expressed in all organs and can be induced by various stress conditions. Subcellular localization and in vitro activity assay revealed that both OsMSR proteins are targeted to the chloroplast and have MSR activity. Overexpression of either OsMSRA4.1 or OsMSRB1.1 in yeast enhanced cellular resistance to oxidative stress. In addition, OsMSRA4.1-overexpressing transgenic rice plants also showed enhanced viability under salt treatment. Our results provide genetic evidence of the involvement of OsMSRs in the plant stress responses. X. Guo and Y. Wu contributed equally to this work.  相似文献   

15.
Chromatin and associated epigenetic marks provide important platforms for gene regulation in response to metabolic changes associated with environmental exposures, including physiological stress, nutritional deprivation, and starvation. Numerous studies have shown that fluctuations of key metabolites can influence chromatin modifications, but their effects on chromatin structure (e.g. chromatin compaction, nucleosome arrangement, and chromatin loops) and how they appropriately deposit specific chemical modification on chromatin are largely unknown. Here, focusing on methionine metabolism, we discuss recent developments of metabolic effects on chromatin modifications and structure, as well as consequences on gene regulation.  相似文献   

16.
Engineering Pathogen Resistance in Crop Plants   总被引:14,自引:0,他引:14  
  相似文献   

17.
Increased incidences of abiotic and biotic stresses impacting productivity in principal crops are being witnessed all over the world. Extreme events like prolonged droughts, intense rains and flooding, heat waves and frost damages are likely to further increase in future due to climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome abiotic stresses to some extent. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for the management of abiotic stress, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we can exploit their unique properties of tolerance to extremities, their ubiquity, genetic diversity, their interaction with crop plants and develop methods for their successful deployment in agriculture production. Besides influencing the physico-chemical properties of rhizospheric soil through production of exopolysaccharides and formation of biofilm, microorganisms can also influence higher plants response to abiotic stresses like drought, chilling injury, salinity, metal toxicity and high temperature, through different mechanisms like induction of osmo-protectants and heat shock proteins etc. in plant cells. Use of these microorganisms per se can alleviate stresses in crop plants thus opening a new and emerging application in agriculture. These microbes also provide excellent models for understanding the stress tolerance, adaptation and response mechanisms that can be subsequently engineered into crop plants to cope with climate change induced stresses.  相似文献   

18.
Mutualisms can be seen as biological markets in which participating species exchange resources and services. Advertisements like the colors fleshy fruits are commonly used to attract mutualistic partners such seed dispersers. Although advertisements are common, the strategies employed in partner attraction and shaping the diversity of advertisements such as fruit colors remain largely unknown. Here, we adopt a market perspective on fruit color advertisement in multi-specific ensembles of fleshy-fruited plants and their avian seed dispersers. We develop and test the following non-exclusive hypotheses about fruit advertisement strategies in two Neotropical plant ensembles: (1) some low-rewarding plants offering low-energy fruits have fruit advertisements indistinguishable from those of some highly rewarding ones offering high-energy fruits thus forming possible mimicry pairs; (2) highly rewarding plants advertise their fruits with distinctive colors; and (3) fruit colors indicate the type of nutrient offered. We find support for two of the advertisement strategies. Further, we discuss how constraints on signal diversity may affect the evolution of advertisement strategies and we provide a perspective on which processes could characterize plant advertisement strategies in the biological market of seed-dispersal mutualisms.  相似文献   

19.
Plant genetic engineering for crop improvement   总被引:1,自引:0,他引:1  
Plant genetic engineering has long since left its experimental stage: transgenic plants with resistance to viruses, bacteria, fungi, various pests and abiotic stresses have already been released in their hundreds. Transgenic plants can produce better fruits and food of higher quality than wild-types, and can be used as bioreactors for the synthesis of pharmaceutically important compounds. This review portrays some of the achievements in this field of plant molecular biology.The authors are with Plant Molecular Biology, Biozentrum, Frankfurt University, Marie-Curie-Strasse 9, D-60439 Frankfurt, Germany  相似文献   

20.
西双版纳热带植物园引种植物物候特征比较   总被引:4,自引:1,他引:3  
迁地保护是生物多样性保护的重要手段之一, 前期的植物引种研究可为迁地保护提供必要的理论支持。通过对西双版纳热带植物园内不同来源的引种植物和本地植物的4个物候期(萌叶期、落叶期、开花期和果熟期)分布格局及其气候影响因子进行对比, 阐明引种植物对环境的适应性和对策。结果表明, 引种植物比本地植物萌叶生长盛期更长, 但对低温和干旱更加敏感的引种植物, 在旱季其落叶比例明显高于本地植物, 而3、4月由于气温的回升, 使引种植物和本地植物在雨季之前就进入了萌叶盛期。而在繁殖物候方面, 由于受气候因子影响较小, 引种植物和本地植物的开花期和果熟期格局季节性表现都不明显, 且规律性不强。总体上, 各来源地的引种植物能根据环境的改变形成相应的生长与繁殖适应对策, 可较好地适应西双版纳的环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号