首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
KEX1 is a chromosomal gene required for the production of the killer toxin encoded by the linear DNA plasmid pGKL-1 of Kluyveromyces lactis. The nucleotide sequence of the cloned KEX1 gene has been determined. The deduced structure of the KEX1 protein, 700 amino acids long, indicated that it contained an internal domain with a striking homology to the sequences of the subtilisin-type proteinases, and a probable transmembrane domain near the carboxyl terminus. The results confirm the hypothesis that the product of the gene KEX1 of K. lactis is a proteinase involved in the processing of the toxin precursor.  相似文献   

2.
Optimum conditions for action of the killer toxin K1 on sensitive strainS. cerevisiae S6 were established. Maximum killing was reached in a very narrow pH range of 4.5–4.6. Maximum susceptibility to toxin was displayed by highly energized fresh cells from the early exponential phase in the presence of an external energy source (at least 200 mmol/L glucose). Further, maintenance of maximum membrane potential was necessary for killer action, as documented by decreasing toxin activity in the presence of increasing concentrations of KCl. The killing was strongly stimulated in the presence of millimolar concentrations of Ca2+ and Mg2+.  相似文献   

3.
K1 killer toxin, a pore-forming protein from yeast   总被引:21,自引:0,他引:21  
K1 killer toxin is a secreted, pore-forming protein that kills sensitive yeast cells. The heterodimeric toxin is processed from a precursor in the Golgi, and has allowed identification of the KEX2- and KEX1-encoded proteases. The toxin binds to a glucan receptor on the cell wall of target yeast, and mutational analysis implicates both the alpha- and beta-toxin subunits in receptor binding. Toxin-resistant mutants with altered cell-wall glucans have helped to outline a pathway of assembly of these polysaccharides. Patch-clamp technology has demonstrated the nature of the lethal channel in toxin-treated plasma membranes. The hydrophobic alpha-subunit-encoding region is the site of all mutations affecting channel formation. Immunity to the toxin is conferred by the toxin precursor, and immunity mutations map to the region encoding the alpha subunit. The precursor probably competes with the toxin to prevent channel formation in toxin-producing cells, but the basis of this remains unknown. This toxin/immunity system has a domain structure that differs from that of other characterized toxins and has no known homologues.  相似文献   

4.
Strains of Saccharomyces cerevisiae harboring M1-dsRNA, the determinant of type 1 killer and immunity phenotypes, secrete a dimeric 19-kd toxin that kills sensitive yeast cells by the production of cation-permeable pores in the cytoplasmic membrane. The preprotoxin, an intracellular precursor to toxin, has the domain sequence delta-alpha-gamma-beta where alpha and beta are the 9.5-and 9.0-kd subunits of secreted toxin. Plasmids containing a partial cDNA copy of M1, in which alpha, gamma, and beta are fused to the PH05 promoter and signal peptide, have previously been shown to express phosphate-repressible toxin production and immunity. Here the construction of a complete DNA copy of the preprotoxin gene and its mutagenesis are described. Analysis of the expression of these mutants from the PH05 promoter elucidates the functions of the preprotoxin domains. delta acts as a leader peptide and efficiently mediates the secretion, glycosylation and maturation of killer toxin. Mutations within the beta subunit indicate it to be essential for binding of toxin to and killing of whole cells but unnecessary for the killing of spheroplasts. Mutations within the putative active site of alpha prevent killing of both cells and spheroplasts. The probable role of beta is therefore recognition and binding to the cell wall receptor whereas alpha is the active ionophore. Mutations within alpha causing loss of toxicity also cause loss of immunity, while the mutants described within gamma and beta retain partial or complete immunity. Expression of gamma without alpha or beta confers no phenotype. The immunity determinant may minimally consist of the alpha domain and the N-terminal portion of gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2. Protoxin stability in kex1 kex2 double mutants indicated the order kex1 --> kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1- and KEX2-dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.  相似文献   

6.
A cDNA fragment encoding the A catalytic domain of the Neocallimastix frontalis endoxylanase XYN3 was amplified and cloned by the polymerase chain reaction technique. The xyn3A DNA fragment was inserted between the Saccharomyces cerevisiae phosphoglycerate kinase gene promoter and terminator sequences on a multicopy episomal plasmid for Kluyveromyces lactis. The XYN3A domain was successfully expressed in K. lactis and functional endoxylanase was secreted by the yeast cells with the K. lactis killer toxin secretion signal. The XYN3A domain was also expressed in a strain of Penicillium roqueforti as a fusion protein (ShBLE::XYN3A) of the phleomycin-resistance gene product and the endoxylanase. Active endoxylanase was efficiently secreted from the fungal cells with the Trichoderma viride cellobiohydrolase (CBH1) secretion signal and processed by a related KEX2 endoprotease of the secretion pathway. Several differently glycosylated forms of the recombinant enzymes were secreted by the yeast and the filamentous fungus. Received: 10 November 1998 / Received revision: 8 March 1999 / Accepted: 14 March 1999  相似文献   

7.
Saccharomyces cerevisiae and other yeast cells harboring the linear double stranded (ds) DNA plasmids pGKL1 and pGKL2 secrete a killer toxin consisting of 97K, 31K and 28K subunits into the culture medium (EMBO J. 5, 1995-2002 (1986), Nucleic Acids Res., 15, 1031-1046 (1987]. The 28K subunit of the killer toxin was successfully expressed in S. cerevisiae when it was cloned on a circular plasmid with its putative promoter region replaced with that of S. cerevisiae chromosomal genes. The expression of the 28K subunit of the killer toxin in killer-sensitive cells resulted in the death of the host cells. This killing activity by the 28K subunit was prevented by the expression of the killer immunity, indicating that the killing activity of the killer toxin complex was carried out by the 28K subunit. Although the 28K subunit was synthesized as a intact precursor protein with its own signal sequence, it was not secreted into the culture medium but remained in the host cells. This indicated that 28K subunit killed host cells from inside of the cells rather than from outside. We further suggested that 28K killer subunit without 97K and 31K subunits did not kill the killer-sensitive cells from outside.  相似文献   

8.
The carboxyl-terminal sequences of the two polypeptide chains of the Saccharomyces cerevisiae K1 killer toxin were determined by protein sequencing and amino acid analysis of peptide fragments generated from the mature, secreted toxin. The COOH-terminal amino acid of the beta chain is histidine 316, the final residue encoded by the precursor gene. The COOH terminus of the alpha chain is at alanine 147 of the preprotoxin. Amino acid composition data for the purified toxin are consistent with that predicted from the gene sequence of the preprotoxin where the alpha and beta subunits consist of amino acid residues 45-147 and 234-316, respectively. The molecular weight of the mature alpha beta dimer is about 20,658. The COOH-terminal sequence determination completes the location of the toxin subunits in the precursor, and its configuration may be represented as prepropeptide-Pro-Arg-alpha-Arg-Arg-gamma-Lys-Arg-beta, where gamma represents the interstitial glycosylated peptide. The COOH terminal side of the paired basic residues (Arg-148 Arg-149 and Lys-232 Arg-233 of preprotoxin) are endoproteolytic processing sites for the product of the KEX2 gene (Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Cell 37, 1075-1089), and thus maturation of the alpha subunit of killer toxin apparently requires a carboxypeptidase B-like activity. A possible candidate for this activity is the product of the KEX1 gene (Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y., and Bussey, H. (1987) Cell, in press).  相似文献   

9.
Yeast Saccharomyces cerevisiae KEX2 gene previously isolated, was characterized as the gene encoding a calcium-dependent endopeptidase required for processing of precursors of alpha-factor and killer toxin. In this study, we report the amino acid sequence of the KEX2 gene product deduced from nucleotide sequencing. Our results indicate that the KEX2 gene contains a 2,442-bp open reading frame encoding a polypeptide of 814 amino acids. The deduced amino acid sequence contains a region extensively homologous to the members of subtilisin-like serine protease family near the N-terminus. A putative membrane-spanning domain near the C-terminus was also detected. These facts indicate that the KEX2-encoded protein may function as a membrane-bound, subtilisin-like serine protease.  相似文献   

10.
We have identified and partially characterized the Saccharomyces cerevisiae KEX1 gene product, Kex1p, to assess its role in processing secreted protein precursors. Anti-Kex1p antibodies identified a 113-kilodalton protein that was absent in cells in which the KEX1 gene has been disrupted and that was more abundant in cells overexpressing the KEX1 gene. Kex1p was found to be a membrane-associated glycoprotein with N-linked carbohydrate. The N-linked oligosaccharide(s) was modified in a progressive manner after synthesis, causing the glycoprotein to slowly increase in mass to 115 kilodaltons. After a Kex2p-mediated cleavage event at specific pairs of basic amino acids, alpha-factor and K1 killer toxin precursors have COOH-terminal dibasic residue extensions and require a carboxypeptidase B-like enzyme to process the precursors to maturity. A carboxypeptidase activity, with apparent specificity for basic amino acids, was detected in KEX1 cells. Disruption of the KEX1 gene abolished this activity, while overexpression of KEX1 increased it. Our results provide biochemical evidence consistent with earlier genetic work, that KEX1 encodes a serine carboxypeptidase involved in the processing of precursors to secreted mature proteins.  相似文献   

11.
从东亚钳蝎 (ButhusmartensiiKarsch ,BmK)毒腺组织cDNA文库中分离的长链钾通道毒素BmTXKβcDNA序列 ,克隆了BmTXKβ基因组序列 .BmTXKβ基因含有一个长度为 886bp的内含子 ,定位于BmTXKβ成熟肽中 ,与其它蝎毒素基因内含子定位于信号肽的基因结构不同 .并且 ,BmTXKβ基因的内含子特征也与其它蝎毒素基因不同 .研究结果从基因水平上证实了BmTXKβ是一个新的蝎毒素样肽 .以BmTXKβcDNA序列为探针与蝎基因组DNASouthern杂交出现 2条特异性杂交带 .杂交结果为蝎毒素基因可能通过DNA重排、多拷贝或多基因家族来调控基因表达提供了证据 .  相似文献   

12.
The Ustilago maydis virally encoded KP1 killer toxin   总被引:2,自引:1,他引:1  
Some strains of the plant-pathogenic fungus Ustilago maydis secrete toxins (killer toxins) that are lethal to susceptible strains of the same fungus. There are three well-characterized killer toxins in U. maydis–KP1, KP4, and KP6–which are secreted by the P1, P4, and P6 subtypes, respectively. These killer toxins are small polypeptides encoded by segments of an endogenous, persistent double-stranded RNA (dsRNA) virus in each U. maydis subtype. In P4 and P6, the M2 dsRNA segment encodes the toxin. In this work, the KP1 killer toxin was purified for internal amino acid sequence analysis, and P1M2 was identified as the KP1 toxin-encoding segment by sequence analysis of cDNA clones. The KP1 toxin is a monomer with a predicted molecular weight of 13.4kDa and does not have extensive sequence similarity with other viral anti-fungal toxins. The P1M2 segment is different from the P4 and P6 toxin-encoding dsRNA segments in that the 3’non-coding region of its plus strand has no sequence homology to the 3’ends of the plus strands of P1M1, P4M2, or P6M2.  相似文献   

13.
By the kar1-mediated cytoduction, linear double-stranded DNA plasmids pGKL1 and pGKL2, encoding killer toxin complex, have been successfully transferred to the recipient strains with about 30% frequency. The killer toxin was found to be secreted through the normal yeast secretory pathway by introducing pGKL plasmids into the several Saccharomyces cerevisiae sec mutants and examining the secretion of killer toxin. S. cerevisiae cells, harboring newly isolated deletion plasmid pGKL1D, expressed only the 28K protein among three killer subunits, and secreted the 28K subunit at a level of zero to 20% efficiency of the cells containing intact pGKL1 plasmid. These data indicated that subunit interaction (cosecretion) of killer proteins is required for the efficient secretion of 28K subunit. The 28K precursor protein was found to translocate across the canine pancreatic endoplasmic reticulum membrane under the direction of its own signal peptide in vitro without any other subunits. From kex2 mutant cells harboring pGKL1 plasmid, the 97K subunit, and its precursor 128K protein were not secreted, however, the 28K subunit was secreted in the same amount as that secreted from KEX2 cells. These lines of evidence suggest that the final assembly of killer toxin complex after KEX2 site of Golgi apparatus is not essential for the secretion of 28K subunit, and therefore, that putative interaction between 128K protein and 28K subunit for the transport between endoplasmic reticulum and Golgi apparatus may be required for the efficient secretion of 28K subunit.  相似文献   

14.
Aims: To develop and test a real-time PCR assay to detect and quantify genes specific to Cylindrospermopsis sp. and cylindrospermopsin-producing cyanobacteria. Method and Results: A duplex real-time PCR assay was developed that targets a cylindrospermopsin-specific and Cylindrospermopsis raciborskii-specific DNA sequence. The C. raciborskii-specific sequence was based on the rpoC1 DNA-dependent RNA polymerase gene, whilst the cylindrospermopsin-specific sequence was selected by surveying an extensive number of potential cylindrospermopsin-producing cyanobacterial strains for genes implicated in toxin production, aoaA, aoaB and aoaC. In toxic strains, sequences of each of these three genes were always present; whilst in nontoxic strains the distribution of these sequences was patchy, resulting in what are likely to be natural deletion mutants. The real-time assay was optimized on a fixed and portable device, with results indicating that the reliable limit of detection for the assay was 100 copies per reaction or 1000 cells ml−1 for both target sequences on both devices. In routine environmental samples enumerated by microscopy, the assay results were positive for all samples where C. raciborskii cells were observed at >1000 cells ml−1 and negative in 15 samples where no C. raciborskii cells were observed. In field samples, the number of copies of the rpoC1 sequence more closely approximated the number of cells enumerated by microscopy, the number of copies of the pks sequence and detection of the toxin-specific sequence matched the results of toxin testing. Conclusions: The duplex real-time PCR assay was a sensitive and rapid method for detecting potential cylindrospermopsin-producing cyanobacteria in the laboratory or in the field. The observation of probable natural deletion mutants provides further evidence that the aoaA, aoaB and aoaC genes are involved in toxin production. Significance and Impact of the Study: This assay provides a new monitoring capability for tracking cylindrospermopsin-producing cyanobacteria that are an emerging threat to water quality.  相似文献   

15.
Many subspecies of the soil bacterium Bacillus thuringiensis produce various parasporal crystal proteins, also known as Cry toxins, that exhibit insecticidal activity upon binding to specific receptors in the midgut of susceptible insects. One such receptor, BT-R(1) (210 kDa), is a cadherin located in the midgut epithelium of the tobacco hornworm, Manduca sexta. It has a high binding affinity (K(d) approximately 1nM) for the Cry1A toxins of B. thuringiensis. Truncation analysis of BT-R(1) revealed that the only fragment capable of binding the Cry1A toxins of B. thuringiensis was a contiguous 169-amino acid sequence adjacent to the membrane-proximal extracellular domain. The purified toxin-binding fragment acted as an antagonist to Cry1Ab toxin by blocking the binding of toxin to the tobacco hornworm midgut and inhibiting insecticidal action. Exogenous Cry1Ab toxin bound to intact COS-7 cells expressing BT-R(1) cDNA, subsequently killing the cells. Recruitment of BT-R(1) by B. thuringiensis indicates that the bacterium interacts with a specific cell adhesion molecule during its pathogenesis. Apparently, Cry toxins, like other bacterial toxins, attack epithelial barriers by targeting cell adhesion molecules within susceptible insect hosts.  相似文献   

16.
The yeast KEX1 gene product has homology to yeast carboxypeptidase Y. A mutant replacing serine at the putative active site of the KEX1 protein abolished activity in vivo. A probable site of processing by the KEX1 product is the C-terminus of the alpha-subunit of killer toxin, where toxin is followed in the precursor by 2 basic residues. Processing involves endoproteolysis following these basic residues and trimming of their C-terminal by a carboxypeptidase. Consistent with the KEX1 product being this carboxypeptidase is its role in alpha-factor pheromone production. In wild-type yeast, KEX1 is not essential for alpha-factor production, as the final pheromone repeat needs no C-terminal processing. However, in a mutant in which alpha-factor production requires a carboxypeptidase, pheromone production is KEX1-dependent.  相似文献   

17.
Strains of the yeast Pichia inositovora that carry the linear plasmids pPin1-1 (18 kb) and pPin1-3 (10 kb) display a killer activity towards Saccharomyces cerevisiae. Cloning and sequencing of the smaller plasmid, pPin1-3, revealed that it is 9683 bp long and has 154-bp terminal inverted repeats. Comparison of pPin1-3 with the only other completely sequenced killer plasmid, pGKL1 of Kluyveromyces lactis, revealed differences in genome organization. The Pichia element has four ORFs that account for 95% of the sequence. ORF1 is homologous to the putative immunity gene of the K. lactis system. A viral B-type DNA polymerase is encoded by ORF2. The predicted product of ORF3 displays similarities to the - and -subunits of the heterotrimeric K. lactis killer toxin, also known as zymocin. A cysteine-rich chitin-binding site and a chitinase signature, characteristic for the -subunit of zymocin were identified in Orf3p. Chitin affinity chromatography and Western analysis confirmed the plasmid specific expression and secretion of a protein that cross-reacts with an antibody raised against the -subunit of K. lactis zymocin. Disruption of the major chitin synthase-gene ( CHS3) renders S. cerevisiae resistant to the toxin, providing further evidence that chitin is the cellular receptor for the P. inositovora toxin. Orf4p of pPin1-3 displays only weak similarities to the -subunit of zymocin, which causes a G1 cell-cycle arrest in S. cerevisiae. However, disruption of the S. cerevisiae gene ELP3/TOT3, which encodes a histone-acetyltransferase that is essential for zymocin action, resulted in reduced sensitivity to the P. inositovora toxin also. Thus, despite obvious differences in genome organization and protein architecture, both killer systems very probably have similar modes of action.Communicated by C. P. Hollenberg  相似文献   

18.
Ninety-six isolates of Klebsiella pneumoniae and K. oxytoca were recovered from wild mammals in Australia. 14.6% of these bacteria produce killing phenotypes that suggest the production of bacteriocin toxins. Cloning and sequencing of the gene clusters encoding two of these killing phenotypes revealed two instances of a bacteriocin associated with a bacteriophage gene, the first such genetic organization described. The newly identified klebicin C gene cluster was discovered in both K. pneumoniae and K. oxytoca. The newly identified klebicin D gene cluster was detected in K. oxytoca. Protein sequence comparisons and phylogenetic inference suggest that klebicin C is most closely related to the rRNase group of colicins (such as colicin E4), while klebicin D is most closely related to the tRNase group of colicins (such as colicin D). The klebicin C and D gene clusters have similar genetic and regulatory organizations. In both cases, an operon structure is inferred consisting of a phage-associated open reading frame and klebicin activity and associated immunity genes. This novel bacteriophage/bacteriocin organization may provide a novel mechanism for the generation of bacteriocin diversity in Klebsiella.Reviewing Editor: Prof. David Guttman  相似文献   

19.
A perennial ryegrass cDNA clone encoding a putative glycine-rich RNA binding protein (LpGRP1) was isolated from a cDNA library constructed from crown tissues of cold-treated plants. The deduced polypeptide sequence consists of 107 amino acids with a single N-terminal RNA recognition motif (RRM) and a single C-terminal glycine-rich domain. The sequence showed extensive homology to glycine-rich RNA binding proteins previously identified in other plant species. LpGRP1-specific genomic DNA sequence was isolated by an inverse PCR amplification. A single intron which shows conserved locations in plant genes was detected between the sequence motifs encoding RNP-1 and RNP-2 consensus protein domains. A significant increase in the mRNA level of LpGRP1 was detected in root, crown and leaf tissues during the treatment of plants at 4°C, through which freezing tolerance is attained. The increase in the mRNA level was prominent at least 2 h after the commencement of the cold treatment, and persisted for at least 1 week. Changes in mRNA level induced by cold treatment were more obvious than those due to treatments with abscisic acid (ABA) and drought. The LpGRP1 protein was found to localise in the nucleus in onion epidermal cells, suggesting that it may be involved in pre-mRNA processing. The LpGRP1 gene locus was mapped to linkage group 2. Possible roles for the LpGRP1 protein in adaptation to cold environments are discussed.  相似文献   

20.
Abstract The rice stem borer, Chilo suppressalis Walker is one of the most important insect pests on rice in Asia, north Africa and southern Europe. Transgenic Bt rice has been developed in the laboratory with good resistance to this pest and other Lepidopteran insects, which will provide a possible alternative tool for this pest control. The full-length cDNAs encoding an aminopeptidase N (CsAPN) and a cadherin (CsCad) were cloned from C. suppressalis. CsAPN showed common features of, and high identities to, other insect APNs in its deduced amino acid sequence. Although a full-length cDNA encoding cadherin-like protein has been reported in GenBank, the newly isolated cadherin here (CsCad) showed some differences in its amino acid sequence, especially at the 7th cadherin repeat region (CR7), which indicated the newly isolated CsCad might be another allele. CsAPN and CsCad were successfully expressed in insect Tn cells, and the blot analysis showed these two proteins could bind Bt toxin Cry1Ab. The results will provide valuable information for the studies of toxin mode of action and the possible toxin resistance mechanisms in this pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号