首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
田玉清  隋晓琳  张婷  李艳梅  李爱荣 《广西植物》2020,40(12):1838-1848
无论在农田还是自然生态系统中,土壤养分异质性普遍存在。植物具有感知土壤养分异质性的能力,并通过调节根系生物量分配及空间分布以获取更多资源。了解寄生胁迫在不同养分条件下对寄主生长发育及根系空间分布的影响,对解析寄主应对寄生胁迫和养分胁迫的适应策略,进而指导寄生性杂草防控具有重要的指导意义。该文采用分根试验,通过对寄主分根,并控制根室两侧氮供应水平及寄生胁迫程度,考察了氮胁迫及两种寄主依赖程度不同的马先蒿的寄生对寄主长芒棒头草生长发育及根系空间分布的影响。结果表明:(1)土壤氮水平与马先蒿寄生均可显著影响长芒棒头草生物量及根冠比,并且两者之间存在显著交互作用,其中土壤氮水平为主要影响因子。(2)两种马先蒿对长芒棒头草的危害程度不同。在NPK和2NPK 处理时,三色马先蒿的寄生显著降低长芒棒头草生物量(茎叶:37.1%、51.5%; 根系:35.6%、63.6%); 在NPK处理时,大王马先蒿的寄生显著增加长芒棒头草生物量(茎叶:29.9%,根系:61.2%)。(3)长芒棒头草的根系生长和空间分布受氮营养的异质分布和寄生的影响,具有明显的感知养分空间分布及调节根系生长能力。  相似文献   

2.
氮素形态对小白菜生长和碳氮积累的影响   总被引:5,自引:0,他引:5  
水培条件下,研究不同氮素形态(硝态氮、铵态氮、甘氨酸、谷氨酰胺、丙氨酸、牛血清蛋白,以及甘氨酸与硝态氮、牛血清蛋白与硝态氮的混合氮源)对小白菜生长和碳氮积累的影响.结果表明:不同氮素形态对小白菜质量、碳氮积累量、可溶性蛋白质含量、可溶性糖含量和游离氨基酸含量的影响不同;硝态氮处理下小白菜地上部分和根的干质量与鲜质量均最大;甘氨酸对小白菜根系的生长及碳氮积累具有明显的促进作用;在3种氨基酸中,谷氨酰胺更有利于小白菜地上部分的生长和氮积累.聚类分析表明,9种氮素形态处理按营养效应大小分为:硝态氮、谷氨酰胺>甘氨酸与硝态氮混合氮源、牛血清蛋白与硝态氮混合氮源、甘氨酸、铵态氮>丙氨酸、牛血清蛋白、对照.有机氮源可以作为小白菜生长的氮源,不同的氮素形态对植物产生的生理效应不同.  相似文献   

3.
以高寒矮嵩草(Kobresia humilis)草甸7个主要植物种为研究对象,利用15 N同位素标记技术,通过分析不同器官对氮素的吸收及分配特征,揭示主要植物种在群落中的生态适应性、竞争力和地位。结果显示:(1)矮嵩草的叶和茎、垂穗披碱草(Elymus nutans)的叶,以及双柱头藨草(Scirpus distigmaticus)和鹅绒委陵菜(Potentilla anserina)的叶、茎、根均偏好累积硝态氮,早熟禾(Poa annua)的穗和叶以及甘肃马先蒿(Pedicularis kansuensis)和短穗兔耳草(Lagotis brachystachya)的根均偏好积累铵态氮。(2)矮嵩草对吸收的甘氨酸和硝态氮主要分配于叶中,铵态氮分配于茎中;双柱头藨草对吸收的甘氨酸和硝态氮主要分配于茎中,铵态氮分配于叶中;垂穗披碱草和早熟禾对吸收的硝态氮和铵态氮主要分配于叶中;垂穗披碱草对吸收的甘氨酸主要分配于根中,而早熟禾将较多的甘氨酸分配到穗中;甘肃马先蒿对吸收的硝态氮主要分配于叶中,铵态氮分配于根中;鹅绒委陵菜对吸收的甘氨酸、硝态氮和铵态氮主要分配于叶中;短穗兔耳草对吸收的甘氨酸主要分配于叶中,硝态氮和铵态氮主要分配于根中。(3)在牧草生长盛期,矮嵩草草甸土壤的有机氮和无机氮主要贡献于甘肃马先蒿的花、早熟禾的穗、垂穗披碱草的根和鹅绒委陵菜的茎叶。研究表明,高寒矮嵩草草甸主要植物不同器官对氮素的吸收及分配呈现多元化特征,因不同植物种的生物学特性和生态适应习性而异。  相似文献   

4.
氮素形态对黄檗幼苗生长及氮代谢相关酶类的影响   总被引:5,自引:1,他引:4  
通过改变水培溶液中NH4^+-N和NO3^--N的比例,研究了不同氮素形态对黄檗(Phellodendron amurense)幼苗生长及氮代谢相关酶类的影响。结果表明,硝态氮比例较高的营养供给比铵态氮比例较高的营养供给有利于黄檗幼苗的生长,叶片叶绿素含量和可溶性蛋白含量也高。在NH4^+-N/NO3^--N为25/75时黄檗幼苗具有最大生物量。在铵态氮比例大的营养供给下,黄檗幼苗的谷氨酰胺合成酶(GS)活性增强,而在硝态氮比例大的营养供给下幼苗的硝酸还原酶(NR)活性则较高,叶片中的硝态氮较低。营养液的氮素形态及其组成通过影响GS与NR的活性而调控黄檗幼苗的氮素代谢。  相似文献   

5.
林木对不同形态氮素具有选择性吸收特征,铵态氮和硝态氮是植物吸收的主要氮素形态.为了明确刨花楠对铵态氮和硝态氮的吸收差异,采用盆栽试验方法,以铵态氮和硝态氮为氮源,以1年生刨花楠实生苗为研究对象,以当地山地红壤为基质,设置了7种不同的铵硝比配施添加试验,研究氮素形态和配比对刨花楠幼苗生长和叶片性状的影响.结果 表明:不同...  相似文献   

6.
氮素形态对黄檗幼苗生长及氮代谢相关酶类的影响   总被引:1,自引:0,他引:1  
通过改变水培溶液中NH4+-N和NO3--N的比例, 研究了不同氮素形态对黄檗(Phellodendron amurense)幼苗生长及氮代谢相关酶类的影响。结果表明, 硝态氮比例较高的营养供给比铵态氮比例较高的营养供给有利于黄檗幼苗的生长, 叶片叶绿素含量和可溶性蛋白含量也高。在NH4+-N/NO3--N为25/75 时黄檗幼苗具有最大生物量。在铵态氮比例大的营养供给下, 黄檗幼苗的谷氨酰胺合成酶(GS)活性增强,而在硝态氮比例大的营养供给下幼苗的硝酸还原酶(NR)活性则较高, 叶片中的硝态氮较低。营养液的氮素形态及其组成通过影响GS与NR的活性而调控黄檗幼苗的氮素代谢。  相似文献   

7.
外源亚精胺对高温胁迫下黄瓜幼苗氮素代谢的影响   总被引:3,自引:0,他引:3  
以较为耐热的黄瓜品种‘津春4号’为试材,在人工气候箱中,采用石英砂培加营养液浇灌的栽培方式,研究了外源亚精胺( Spd)对高温胁迫(42℃)下黄瓜幼苗氮素代谢的影响.结果表明:短期高温胁迫处理,尤其是4h内,植株硝态氮含量降低而铵态氮含量升高;外源Spd预处理使幼苗体内硝态氮和铵态氮含量升高且硝酸还原酶(NR)活性增强.较长期高温胁迫处理下,幼苗根系中硝态氮含量升高但向地上部运输受阻,根系NR钝化,根系和叶片中铵态氮含量均显著升高;高温胁迫下喷施Spd,除进一步促进根系吸收硝态氮且向地上部运输外,根系和叶片NR活性亦有所升高,从较长期的效果看,外源Spd还具有防止铵态氮过度积累、促进幼苗体内氮素代谢趋于正常的作用.  相似文献   

8.
氮素形态对樱桃番茄果实发育中氮代谢的影响   总被引:5,自引:0,他引:5  
以樱桃番茄为材料,采用基质 营养液共培养的方法,研究了全硝态氮(NO3-)、铵态氮和硝态氮配施(75%NO3-∶25%NH4+)及全铵态氮(NH4+)营养对樱桃番茄果实氮代谢及硝酸还原酶(NR)和谷氨酰胺合成酶(GS)基因表达的影响.结果表明: 铵态氮和硝态氮配施处理下樱桃番茄的单果质量比全硝态氮处理略有增加,且果实中NH4+、总氨基酸、氮含量和氮素累积量均显著高于全硝态氮处理;全硝态氮及铵态氮和硝态氮配施处理下果实NR活性及其基因表达没有明显差异,但都显著高于全铵态氮处理;铵态氮和硝态氮配施处理下果实GS活性都高于全硝态氮处理.不同形态氮素及配施处理下,同工酶GS1(胞质型GS)和GS2(叶绿体型GS)的表达与GS的活性不一致,说明氮素对GS活性的影响主要发生在转录后水平.  相似文献   

9.
采用正交试验设计,研究铵态氮、硝态氮和酰胺态氮3种氮素形态及其不同浓度配比对苗期菘蓝的单株干重、叶内的硝酸还原酶活性及矿质元素吸收的影响。结果显示:(1)影响苗期菘蓝单株干重的氮素形态依次为酰胺态氮>铵态氮>硝态氮。(2)不同氮素形态对叶片硝酸还原酶活性影响有差异,铵态氮影响最大,其次是硝态氮和酰胺态氮。(3)不同形态氮素配合施用后均能促进P、K、Ca、Mg、Cd、Mn、Cr、Sr 8种元素的吸收,但不利于Ni和Fe的吸收;元素吸收受铵态氮影响最大的矿质元素有K、Ba、Se、Ni、B、Si、Fe 7种元素,受硝态氮影响最大的元素有P、Cd、Ti、Al、Cu 5种元素,受酰胺态氮影响最大的元素有Na、Ca、Mg、Zn、Mo、Mn、Cr、Sr 8种元素。研究表明,不同形态氮素对苗期菘蓝吸收矿质元素的影响存在很大的差异,应注重酰胺态氮与无机的铵态氮、硝态氮的配合施用;适宜氮素形态及其配比能提高叶中硝酸还原酶的活性并促进矿质元素的吸收,从而有效地促进菘蓝的生长。  相似文献   

10.
细叶马先蒿为玄参科多年生草本植物。年生产周期明显缩短。根系营养生长至花期为粗壮主根与纤细侧根并存,果期侧根几乎全部枯萎脱落,所存留根系皆呈乳白色。由胚根形成的初生主根根毛密集,初生木质部二原型。侧生分生组织只有形成层而无木栓形成层。根表皮细胞经解离后略呈不规则方形片状,横切面为平周长梭形,进行垂周分裂增加梭形根表皮细胞长度,以适应根的增粗生长。根表皮脱落时,外皮层以同样生长方式代替脱落的表皮。在年  相似文献   

11.
Haustorium formation is the characteristic feature of all parasitic plants and a vital process for successful parasitism. Previous investigations on haustorium initiation and development are constricted to induced processes by host-derived signals or synthetic analogs. Spontaneous haustorium formation in the absence of host signals, a process representing an early stage in the evolution of parasitic plants, remains largely unexplored. Lack of fast and frequent formation of spontaneous haustoria greatly hinders full understanding of haustorium formation in root hemiparasites. In this study, seedlings of Pedicularis kansuensis Maxim., a facultative root hemiparasitic species in Orobanchaceae observed to produce many spontaneous haustoria, were grown in autoclaved water agar in the absence of any known haustoriuminducing stimulants. We aimed to test the temporal and developmental pattern of spontaneous haustorium formation. Also, effects of sucrose supply and root contact on spontaneous haustorium formation were tested. Spontaneous haustoria were observed starting from six days after germination, much earlier than previously reported root hemiparasites. A majority of the spontaneous haustoria formed on lateral roots. Percentage of seedlings with spontaneous haustoria was 28.8% when grown on water agar plates, with a mean of four haustoria per seedling two weeks after germination. Haustorium formation by seedlings grown in water agar amended with 2% sucrose was more than twice of those without sucrose amendment. Singly grown seedlings were able to develop spontaneous haustoria at similar levels as those grown with another conspecific seedling. In view of the fast and abundant formation of spontaneous haustoria, P. kansuensis may be developed as an excellent experimental system in future investigations for unraveling endogenous regulation of haustorium initiation and development in root hemiparasitic plants.  相似文献   

12.
吸器是寄生植物的特征器官,研究影响其发生的因素,有助于了解寄生关系的建立和调控过程。该研究以两种列当科(Orobanchaceae)根部半寄生植物甘肃马先蒿(Pedicularis kansuensis)和松蒿(Phtheirospermum japonicum)为材料,通过皿内培养试验,分析了蔗糖、DMBQ(2,6-二甲氧基-对-苯醌,一种高效的列当科根部半寄生植物吸器诱导化合物)和寄主植物诱导下两种根部半寄生植物吸器发生情况。结果表明:(1)蔗糖显著促进两种根部半寄生植物吸器发生,无寄主存在时,2%蔗糖处理使甘肃马先蒿和松蒿吸器发生率分别提高39.9%和20.2%。(2)蔗糖明显提升寄主植物对两种根部半寄生植物的吸器诱导水平,添加蔗糖后,寄主诱导的甘肃马先蒿单株吸器数和具木质桥的吸器比例分别增加5.7个/株和17.9%,松蒿吸器发生率和具木质桥的吸器比例分别提升76.7%和16.2%。(3)蔗糖对松蒿吸器发生的促进作用与已知吸器诱导化合物DMBQ相当,均能诱导50%以上的植株产生吸器。(4)培养基中添加4%蔗糖对两种根部半寄生植物的吸器诱导效果最好,其中甘肃马先蒿吸器发生率为56%...  相似文献   

13.
Sas L  Rengel Z  Tang C 《Annals of botany》2002,89(4):435-442
Nitrogen nutrition can influence cluster root formation in many wild species, but the effect of N form on cluster root formation and root exudation by white lupin is not known. In a solution culture study, we examined the effect of N nutrition (ammonium, nitrate, both or N2 fixation) on cluster root formation and H+ extrusion by white lupin plants under deficient and adequate P supply. The number of cluster roots increased greatly when plants were supplied with I microM P compared with 50 microM P, the increase being 7.8-fold for plants treated with (NH4)2SO4, 3-fold for plants treated with KNO3 and NH4NO3, and 2-4-fold for N2-fixing plants. Under P deficiency. NH4+-N supply resulted in production of a greater number and biomass of cluster roots than other N sources. Dry weight of cluster roots was 30 % higher than that of non-cluster roots in P-deficient plants treated with (NH4)2SO4 and NH4NO3. In plants treated with sufficient P (50 microM), the weight of non-cluster roots was approx. 90 % greater than that of cluster roots. Both total (micromol per plant h(-1)) and specific (micromol g(-1) root d. wt h(-1)) H+ extrusions were greatest from roots of plants supplied with (NH4)2SO4, followed by those supplied with NH4NO3 and N2 fixation, whereas plants receiving KNO3 had negative net H+ extrusion between the third and fifth week of growth (indicating uptake of protons or release of OH- ions). The rate of proton extrusion by NH4+-N-fed plants was similar under P-deficient and P-sufficient conditions. In contrast, proton exudation by N2-fixing plants and KNO3-treated plants was ten-fold greater under P deficiency than under P sufficiency. In comparison with P deficiency, plants treated with 50 microM P had a significantly higher concentration of P in roots, shoots and youngest expanded leaves (YEL). Compared with the N2 fixation and KNO3 treatments, total N concentration was highest in roots, shoots and YEL of plants supplied with (NH4)2SO4 and NH4NO3, regardless of P supply. Under P deficiency, K concentrations in roots decreased at all N supplies, especially in plants treated with (NH4)2SO4 and NH4NO3, which coincided with the greatest H+ extrusion at these P and N supplies. In conclusion, NH4-N nutrition stimulated cluster root formation and H+ extrusion by roots of P-deficient white lupin.  相似文献   

14.
Li AR  Smith SE  Smith FA  Guan KY 《Annals of botany》2012,109(6):1075-1080

Background and Aims

Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant.

Methods

Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare ‘Fleet’ (barley) as the host plant. This study consisted of two greenhouse pot experiments.

Key Results

Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite''s host plant on haustoria production and caused significant growth depression of P. tricolor.

Conclusions

AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds.  相似文献   

15.
Significant spatial variability in NH4+, NO3- and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3-, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3- and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3-, and vice versa. The highest NO3- influx occurred 0-30 mm from the root apex in Douglas-fir and 0-10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5-20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation.  相似文献   

16.
In a comparative morphological study of haustoria in the four Scurrula species occurring in the Annapurna Conservation Area (ACA) of Nepal, only one basic type of haustorium was found, regardless of host and elevation, namely a primary haustorium (leading to a wood rose) with epicortical root. The endophytic system of the primary haustorium, however, showed differences, which allowed classification into (1) flanging endophyte, (2) flanging endophyte with radial shaft, and (3) sinker endophyte. Scurrula elata and Scurrula gracilifolia showed marked differences in haustorium morphology on different hosts. Scurrula elata is most successful in establishing over a wide range of hosts due to its specific haustorium morphology and endophyte system. Epicortical roots of the genus Scurrula resemble those of other Old World Loranthaceae morphologically and functionally, but differ significantly from New World species. Vegetative reproduction by means of epicortical roots, which develop secondary haustoria and shoots, is very common in all four Scurrula species. The number of root-borne shoots produced by secondary haustoria varied among Scurrula species, depending on the age of the mistletoes as well as the length and vigour of the roots.  相似文献   

17.
Parasitic plants in the Orobanchaceae invade host plant roots through root organs called haustoria. Parasite roots initiate haustorium development when exposed to specific secondary metabolites that are released into the rhizosphere by host plant roots. While molecular approaches are increasingly being taken to understand the genetic mechanism underlying these events, a limitation has been the lack of a transformation system for parasitic plants. Since the haustorium development occurs in roots of Orobanchaceae, root cultures may be suitable material for transient or stable transformation experiments. To this end, root cultures were obtained from explants, and subsequently calluses, from the hemiparasitic plant Triphysaria versicolor. The cultured roots retained their competence to form haustoria when exposed to host roots, host root exudates, or purified haustorium-inducing factors. The root culture haustoria invaded host roots and initiated a vascular continuity between the parasite and host roots. The ontogeny of haustoria development on root cultures was indistinguishable from that on seedlings roots. Root cultures should provide useful material for molecular studies of haustorium development.  相似文献   

18.
The C(3) grass Poa trivialis and the C(4) grass Panicum maximum were grown in sand culture and received a complete nutrient solution with nitrogen supplied as 1.5 mol m(-3) NH(4)NO(3). (15)N tracer techniques were used to quantify the relative use of root uptake and mobilization in supplying nitrogen to growing leaves in intact plants which either continued to receive nitrogen or which received the complete nutrient solution without nitrogen. The allocation of both (15)N-labelled nitrogen uptake and unlabelled mobilized nitrogen indicated that, under their conditions of growth, the sink strength of growing leaves was relatively greater in P. maximum than P. trivialis. The supply of nitrogen by mobilization to side tillers of P. trivialis was completely stopped as the external nitrogen supply was reduced, whilst in P. maximum some allocation of mobilized nitrogen to side tillers, roots and growing leaves was maintained. In both plant species receiving an uninterrupted supply of nitrogen the allocation pattern of mobilized nitrogen differed from that of nitrogen derived from root uptake. Differences exist in the degree to which P. trivialis and P. maximum utilized uptake and mobilization to supply nitrogen to the growing leaves. In P. trivialis roots were always a net sink of mobilized nitrogen, irrespective of the external nitrogen supply. In P. maximum, roots were a net sink of mobilized nitrogen when external nitrogen was withdrawn, but exhibited both source and sink behaviour when nitrogen supply was continued.  相似文献   

19.
Ammonium and nitrate uptake by the floating plant Landoltia punctata   总被引:1,自引:0,他引:1  
BACKGROUND AND AIMS: Plants from the family Lemnaceae are widely used in ecological engineering projects to purify wastewater and eutrophic water bodies. However, the biology of nutrient uptake mechanisms in plants of this family is still poorly understood. There is controversy over whether Lemnaceae roots are involved in nutrient uptake. No information is available on nitrogen (N) preferences and capacity of Landoltia punctata (dotted duckweed), one of the best prospective species in Lemnaceae for phytomelioration and biomass production. The aim of this study was to assess L. punctata plants for their ability to take up NH4+ and NO3- by both roots and fronds. METHODS: NO3- and NH4+ fluxes were estimated by a non-invasive ion-selective microelectrode technique. This technique allows direct measurements of ion fluxes across the root or frond surface of an intact plant. KEY RESULTS: Landoltia punctata plants took up NH4+ and NO3- by both fronds and roots. Spatial distribution of NH4+ and NO3- fluxes demonstrated that, although ion fluxes at the most distal parts of the root were uneven, the mature part of the root was involved in N uptake. Despite the absolute flux values for NH4+ and NO3- being lower in roots than at the frond surface, the overall capacity of roots to take up ions was similar to that of fronds because the surface area of roots was larger. L. punctata plants preferred to take up NH4+ over NO3- when both N sources were available. CONCLUSIONS: Landoltia punctata plants take up nitrogen by both roots and fronds. When both sources of N are available, plants prefer to take up NH4+, but will take up NO3- when it is the only N source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号