首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Singh M  Castillo D  Patel CV  Patel RC 《Biochemistry》2011,50(21):4550-4560
PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.  相似文献   

2.
PACT is a stress-modulated activator of the interferon-induced double-stranded RNA-activated protein kinase (PKR). Stress-induced phosphorylation of PACT is essential for PACT''s association with PKR leading to PKR activation. PKR activation leads to phosphorylation of translation initiation factor eIF2α inhibition of protein synthesis and apoptosis. A recessively inherited form of early-onset dystonia DYT16 has been recently identified to arise due to a homozygous missense mutation P222L in PACT. To examine if the mutant P222L protein alters the stress-response pathway, we examined the ability of mutant P222L to interact with and activate PKR. Our results indicate that the substitution mutant P222L activates PKR more robustly and for longer duration albeit with slower kinetics in response to the endoplasmic reticulum stress. In addition, the affinity of PACT-PACT and PACT-PKR interactions is enhanced in dystonia patient lymphoblasts, thereby leading to intensified PKR activation and enhanced cellular death. P222L mutation also changes the affinity of PACT-TRBP interaction after cellular stress, thereby offering a mechanism for the delayed PKR activation in response to stress. Our results demonstrate the impact of a dystonia-causing substitution mutation on stress-induced cellular apoptosis.  相似文献   

3.
The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTΔ13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTΔ13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTΔ13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2−/− murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress.  相似文献   

4.
Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and PACT form a triple complex with Dicer and facilitate the production of small interfering RNA (siRNA) by Dicer. Knockdown of both TRBP and PACT in cultured cells leads to significant inhibition of gene silencing mediated by short hairpin RNA but not by siRNA, suggesting that TRBP and PACT function primarily at the step of siRNA production. Taken together, these findings indicate that human TRBP and PACT directly interact with each other and associate with Dicer to stimulate the cleavage of double-stranded or short hairpin RNA to siRNA. Our work significantly alters the current model for the assembly and function of the Dicer-containing complex that generates siRNA and micro-RNA in human.  相似文献   

5.
The dsRNA protein kinase PKR: virus and cell control   总被引:12,自引:0,他引:12  
García MA  Meurs EF  Esteban M 《Biochimie》2007,89(6-7):799-811
  相似文献   

6.
PKR (protein kinase, RNA activated) is an interferon (IFN)-induced serine-threonine protein kinase and is one of the key mediators in IFN's cellular actions. Although double-stranded (ds) RNA is the most relevant PKR activator during viral infections, PACT acts as a stress-modulated activator of PKR and is an important regulator of PKR dependent signaling pathways in the absence of viral infections. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In the present study, we have investigated the functional significance of PACT-PACT interaction in mediating PKR activation in response to cellular stress. Our results suggest that enhanced interaction between PACT molecules when PACT is phosphorylated in response to stress signals on serines 246 and 287 is essential for efficient PKR activation. Using a point mutant of PACT that is deficient in PACT-PACT interaction, we demonstrate that PACT-PACT interaction is essential for efficient PKR activation.  相似文献   

7.
Summary: The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections.  相似文献   

8.
The protein activator of RNA-activated protein kinase (PKR) is a proapoptotic protein called PACT. PKR is an interferon (IFN)-induced serine-threonine protein kinase that plays a central role in IFN's antiviral and antiproliferative activities. PKR activation in cells leads to phosphorylation of the alpha-subunit of the eukaryotic protein synthesis initiation factor (eIF)2alpha, inhibition of protein synthesis, and apoptosis. In the absence of viral infections, PKR is activated by its activator PACT, especially in response to diverse stress signals. Overexpression of PACT in cells causes enhanced sensitivity to stress-induced apoptosis. We examined PACT expression in different mouse tissues and evaluated its possible role in regulating apoptosis. PACT is expressed at high levels in colonic epithelial cells, especially as they exit the cell cycle and enter an apoptotic program. PACT expression also coincides with the presence of active PKR and phosphorylated eIF2alpha. These results suggest a possible role of PACT-mediated PKR activation in the regulation of epithelial cell apoptosis in mouse colon. In addition, transient overexpression of PACT in a nontransformed intestinal epithelial cell line leads to induction of apoptosis, further supporting PACT's role in inducing apoptosis.  相似文献   

9.
It is now apparent that the double-stranded (ds)RNA-dependent protein kinase, PKR, is a regulator of diverse cellular responses to stress. Recently, the murine dsRNA-binding protein RAX and its human ortholog PACT were identified as cellular activators of PKR. Previous reports demonstrate that following stress, RAX/PACT associates with and activates PKR resulting in eIF2alpha phosphorylation, consequent translation inhibition, and cell death via apoptosis. Although RAX/PACT is phosphorylated during stress, any regulatory role for this post-translational modification has been uncertain. Now we have discovered that RAX is phosphorylated on serine 18 in both human and mouse cells. The non-phosphorylatable form of RAX, RAX(S18A), although still able to bind dsRNA and associate with PKR, fails to activate PKR following stress. Furthermore, stable expression of RAX(S18A) results in a dominant-negative effect characterized by deficiency of eukaryotic initiation factor 2 alpha subunit phosphorylation, delay of translation inhibition, and failure to undergo rapid apoptosis following removal of interleukin-3. We propose that the ability of RAX to activate PKR is regulated by a sequential mechanism featuring RAX association with PKR, RAX phosphorylation at serine 18, and activation of PKR.  相似文献   

10.
Cellular stresses such as disruption of calcium homeostasis, inhibition of protein glycosylation, and reduction of disulfide bonds result in accumulation of misfolded proteins in the endoplasmic reticulum (ER) and lead to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein glycosylation, induces ER stress and apoptosis. In this study, we examined the involvement of double-stranded RNA (dsRNA)-activated protein kinase (PKR) and its protein activator PACT in tunicamycin-induced apoptosis. We demonstrate for the first time that PACT is phosphorylated in response to tunicamycin and is responsible for PKR activation by direct interaction. Furthermore, PACT-induced PKR activation is essential for tunicamycin-induced apoptosis, since PACT as well as PKR null cells are markedly resistant to tunicamycin and show defective eIF2α phosphorylation and C/EBP homologous protein (CHOP, also known as GADD153) induction especially at low concentrations of tunicamycin. Reconstitution of PKR and PACT expression in the null cells renders them sensitive to tunicamycin, thus demonstrating that PACT-induced PKR activation plays an essential function in induction of apoptosis.  相似文献   

11.
The interferon (IFN)-induced, double-stranded (ds)RNA-activated serine-threonine protein kinase, PKR, is a key mediator of the antiviral activities of IFNs. In addition, PKR activity is also involved in regulation of cell proliferation, apoptosis, and signal transduction. In virally infected cells, dsRNA has been shown to bind and activate PKR kinase function. Implication of PKR activity in normal cellular processes has invoked activators other than dsRNA because RNAs with perfectly duplexed regions of sufficient length that are able to activate PKR are absent in cellular RNAs. We have recently reported cloning of PACT, a novel protein activator of PKR. PACT heterodimerizes with PKR and activates it by direct protein-protein interaction. Overexpression of PACT in mammalian cells leads to phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2alpha), the cellular substrate for PKR, and leads to inhibition of protein synthesis. Here, we present evidence that endogenous PACT acts as a protein activator of PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. Following exposure of cells to these stress agents, PACT is phosphorylated and associates with PKR with increased affinity. PACT-mediated activation of PKR leads to enhanced eIF2alpha phosphorylation followed by apoptosis. Based on the results presented here, we propose that PACT is a novel stress-modulated physiological activator of PKR.  相似文献   

12.
13.
R C Patel  G C Sen 《The EMBO journal》1998,17(15):4379-4390
PKR, a latent protein kinase, mediates the antiviral actions of interferon. It is also involved in cellular signal transduction, apoptosis, growth regulation and differentiation. Although in virus-infected cells, viral double-stranded (ds) RNA can serve as a PKR activator, cellular activators have remained obscure. Here, we report the cloning of PACT, a cellular protein activator of PKR. PACT heterodimerized with PKR and activated it in vitro in the absence of dsRNA. In mammalian cells, overexpression of PACT caused PKR activation and, in yeast, co-expression of PACT enhanced the anti-growth effect of PKR. Thus, PACT has the hallmarks of a direct activator of PKR.  相似文献   

14.
PACT is a 35-kDa human protein that can directly bind and activate the latent protein kinase, PKR. Here we report that PKR activation by PACT causes cellular apoptosis in addition to PKR autophosphorylation and translation inhibition. We analyzed the structure-function relationship of PACT by measuring its ability to bind and activate PKR in vitro and in vivo. Our studies revealed that among three domains of PACT, the presence of either domain 1 or domain 2 was sufficient for high-affinity binding of PACT to PKR. On the other hand, domain 3, consisting of 66 residues, was absolutely required for PKR activation in vitro and in vivo. When fused to maltose-binding protein, domain 3 was also sufficient for efficiently activating PKR in vitro. However, it bound poorly to PKR at the physiological salt concentration and consequently could not activate it properly in vivo. As anticipated, activation of PKR by domain 3 in vivo could be restored by attaching it to a heterologous PKR-binding domain. These results demonstrated that the structure of PACT is modular: it is composed of a distinct PKR-activation domain and two mutually redundant PKR-interacting domains.  相似文献   

15.
Activation of the latent protein kinase, PKR, by extracellular stresses and triggering of resultant cellular apoptosis are mediated by the protein, PACT, which itself gets phosphorylated in stressed cells. We have analyzed the underlying biochemical mechanism by carrying out alanine-scanning mutagenesis of the PKR activation domain of PACT. Among the indispensable residues identified were two serine residues, whose phosphorylation was essential for the cellular actions of PACT. Two-dimensional gel analysis, Western analysis using phosphoamino acid-specific antiserum, and in vivo 32P labeling of PACT demonstrated that constitutive phosphorylation of one of the two residues, Ser246, was required for stress-induced phosphorylation of the other, Ser287. Substitution of either of them by threonine or aspartic acid, but not alanine, was tolerated. Substitution of both residues with the phosphoserine mimetic, aspartic acid, produced a mutant PACT that, unlike the wild-type protein, caused PKR activation and apoptosis, even in unstressed cells. These results indicate that phosphorylation of specific serine residues in the activation domain of PACT is the major mode of transmission of cellular stress response to PKR.  相似文献   

16.
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACTdependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25–35% increase of cells in G1. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G1 arrest. Furthermore, co-expression of p53, RAX/PACT and the dominantnegative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G1 growth arrest and expression of RAX/PACT in pkr+/+ but not pkr-/- MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/ PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G1 cell cycle arrest.  相似文献   

17.
Peters GA  Khoo D  Mohr I  Sen GC 《Journal of virology》2002,76(21):11054-11064
PACT, a protein activator of PKR, can cause inhibition of cellular protein synthesis and apoptosis. Here, we report that the Us11 protein of herpes simplex virus type 1 can block PKR activation by PACT both in vitro and in vivo. Although Us11 can bind to both PKR and PACT, mutational analyses revealed that the binding of Us11 to PKR, and not to PACT, was essential for its inhibitory action. Similar analyses also revealed that the inhibitory effect was mediated by an interaction between the C-terminal half of Us11 and the N-terminal domain of PKR. The binding of Us11 to PKR did not block the binding of PKR to PACT but prevented its activation. Us11 is the first example of a viral protein that can inhibit the action of PACT on PKR.  相似文献   

18.
During RNA interference and related gene regulatory pathways, the endonuclease Dicer cleaves precursor RNA molecules to produce microRNAs (miRNAs) and short interfering RNAs (siRNAs). Human cells encode a single Dicer enzyme that can associate with two different double-stranded RNA (dsRNA)-binding proteins, protein activator of PKR (PACT) and trans-activation response RNA-binding protein (TRBP). However, the functional redundancy or differentiation of PACT and TRBP in miRNA and siRNA biogenesis is not well understood. Using a reconstituted system, we show here that PACT and TRBP have distinct effects on Dicer-mediated dsRNA processing. In particular, we found that PACT in complex with Dicer inhibits the processing of pre-siRNA substrates when compared with Dicer and a Dicer–TRBP complex. In addition, PACT and TRBP show non-redundant effects on the production of different-sized miRNAs (isomiRs), which in turn alter target-binding specificities. Experiments using chimeric versions of PACT and TRBP suggest that the two N-terminal RNA-binding domains of each protein confer the observed differences in dsRNA substrate recognition and processing behavior of Dicer–dsRNA-binding protein complexes. These results support the conclusion that in humans, Dicer-associated dsRNA-binding proteins are important regulatory factors that contribute both substrate and cleavage specificity during miRNA and siRNA production.  相似文献   

19.
TARRNA结合蛋白是细胞中双链RNA结合蛋白家族成员之一.它可以结合HIV-1TARRNA,并与Tat协同作用激活LTR表达,进而促进病毒的转录与翻译.TRBP也是将干扰素抗病毒通路与RNA干扰免疫通路相连的一种细胞蛋白.在干扰素诱生的PKR反应中,TRBP通过直接抑制PKR的自磷酸化、与PKR竞争通用的RNA底物或与PACT形成异源二聚体等机制抑制细胞内的PKR反应,从而降低了PKR介导的对病毒表达的抑制作用.TRBP与Dicer和Ago2等组成的RNA诱导沉默复合体,在RNA干扰中发挥着关键作用并调控随后的序列特异性降解.在HIV-1感染中,TRBP更倾向于促进病毒的表达与复制,因此TRBP也成为控制HIV-1感染的新靶点.  相似文献   

20.
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACT-dependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25–35% increase of cells in G1. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G1 arrest. Furthermore, co-expression of p53, RAX/PACT and the dominant-negative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G1 growth arrest and expression of RAX/PACT in pkr+/+ but not pkr−/− MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G1 cell cycle arrest.Key words: p53, PKR, RAX, PACT, Ubc9, sumoylation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号