首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Genomics》2020,112(6):4454-4462
CircRNAs are involved in the regulation of various cellular and biological processes, but none of the studies have focused on hair follicle in sheep. In this study, the expression profile of circRNAs between small waves (SM) and straight wool (ST) groups was investigated using RNA-Seq. The results showed that a total of 5,527 circRNAs were identified and 114 of them were differentially expressed between two groups. Enrichment analysis revealed that the host genes with DE circRNAs were mainly enriched in TGF-beta pathway, Notch pathway. Miranda software was used to found that 129 miRNAs might be binding to 114 DE circRNAs, including miR-10a, miR-143, miR-let-7a, miR-199a-3p, miR-200a, which also had important influence on hair follicle morphogenesis. Furthermore, the coding potential of circRNAs was predicted, and 11 circRNAs were simultaneously identified with coding potential. In summary, circRNAs have important effects on hair follicle growth and development, and these results will provide a basis for molecular mechanism of pattern formation.  相似文献   

2.
3.
4.
5.
6.
7.
Circular RNAs (circRNAs) are a large class of non‐coding endogenous RNAs that could act as competing endogenous RNAs (ceRNAs) to terminate the mRNA targets' suppression of miRNAs. To elucidate the intricate regulatory roles of circRNAs in the ethylene pathway in tomato fruit, deep sequencing and bioinformatics methods were performed. After strict screening, a total of 318 circRNAs were identified. Among these circRNAs, 282 were significantly differentially expressed among wild‐type and sense‐/antisense‐LeERF1 transgenic tomato fruits. Besides, 1254 target genes were identified and a large amount of them were found to be involved in ethylene pathway. In addition, a sophisticated regulatory model consisting of circRNAs, target genes and ethylene was set up. Importantly, 61 circRNAs were found to be potential ceRNAs to combine with miRNAs and some of the miRNAs had been revealed to participate in the ethylene signaling pathway. This research further raised the possibility that the ethylene pathway in tomato fruit may be under the regulation of various circRNAs and provided a new perspective of the roles of circRNAs.  相似文献   

8.
9.
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.  相似文献   

10.
中华蜜蜂幼虫肠道响应球囊菌胁迫的microRNA应答分析   总被引:3,自引:0,他引:3  
【目的】蜜蜂球囊菌(Ascosphaera apis,简称球囊菌)是一种能够侵染中华蜜蜂(Apis cerana cerana,简称中蜂)幼虫的致死性真菌病原。微小RNA(microRNA,miRNA)可通过在转录后水平靶向抑制或降解mRNA而参与宿主与病原互作过程。本研究旨在对球囊菌胁迫的中蜂6日龄幼虫肠道的差异表达miRNA(DEmiRNA)及其靶基因进行深入分析,进而揭示DEmiRNA在中蜂响应球囊菌胁迫应答过程中的作用。【方法】利用Illumina MiSeq平台对正常及球囊菌胁迫的中蜂6日龄幼虫肠道(AcCK和AcT)进行测序,通过相关生物信息学软件预测DEmiRNA及其靶基因。通过Blast将靶基因注释到GO和KEGG数据库。利用Cytoscape软件构建DEmiRNA与其靶mRNA的调控网络。通过Stem-loop RT-PCR和qPCR验证测序数据的可靠性。【结果】本研究共预测出537个miRNA,其长度分布介于16–35 nt之间,且不同长度的miRNA首位碱基偏向性差异明显。通过Stem-loop RT-PCR证实了10个novel miRNA的表达。AcCK vs AcT比较组共有54个DEmiRNA,包含31个上调和23个下调miRNA,可分别靶向结合6170和8199个靶基因。GO分类结果显示上调和下调miRNA的靶基因分别涉及47和47个条目,富集基因数最多的皆为结合细胞进程和催化活性。KEGG代谢通路(pathway)富集分析结果表明上调和下调miRNA的靶基因分别富集在134和126条pathway,富集基因数最多的均为内吞作用和内质网中的蛋白质加工。调控网络分析结果表明,DEmiRNA及其靶mRNA形成十分复杂的调控关系;31个DEmiRNA可靶向结合51个与泛素介导的蛋白水解相关的mRNA,18个DEmiRNA可靶向结合14个与Jak-STAT信号通路相关的mRNA;miR-1277-x、miR-26-x、miR-27-y、miR-30-x、miR-6052-x等16个miRNA共同参与了上述两条免疫通路的调控。最后,随机挑选3个DEmiRNA进行qPCR验证,结果证明了测序数据的可靠性。【结论】本研究提供了中蜂幼虫肠道在球囊菌胁迫后期的miRNA的表达谱和差异表达信息,揭示了球囊菌与宿主之间在miRNA组学水平存在复杂的互作。miR-6052-x和miR-1277-x作为调控网络的核心可能通过影响细胞凋亡参与宿主的免疫防御,miR-26-x和miR-30-x可能通过调控Jak-STAT信号通路参与宿主的胁迫应答。本研究筛选出的关键DEmiRNA有望作为治疗白垩病的分子靶标。  相似文献   

11.
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in gene regulation. Approximately half of miRNAs are located within known genes and called intragenic miRNAs. 408 human intragenic miRNAs and their corresponding host genes were analyzed for genomic organization and functional characterization. Using quantitative real-time PCR, the expression levels of a subset of intragenic miRNAs and their host genes were examined in diverse myeloid leukemia cell lines, and their regulation in response to pharmacological stimuli was also evaluated. Expression of miR-22 strongly correlated with both myeloid leukemia subtypes and the expression of its host gene C17orf91 (p?<?0.05). The latter was absent in hematopoietic progenitors but abundant in erythroid and monocytic lineages. These results demonstrated that the expression signatures of miR-22 and C17orf91 are associated with developmental lineages and specific leukemia subtypes.  相似文献   

12.
The microRNA (miRNA) pathway represents an integral component of the gene regulation circuitry that controls development. In recent years, the role of miRNAs in embryonic stem (ES) cells and mammalian embryogenesis has begun to be explored. A few dozens of miRNAs expressed in mammalian ES cells, either exclusively or nonexclusively, have been cloned. The overall role of miRNAs in ES cells and embryonic development has been assessed by examining the effect of knocking out Dicer, an RNase III enzyme required for miRNA and small interfering RNA biogenesis, as well as DGCR8, a nuclear protein specifically involved in miRNA biogenesis. In addition, the role of a cluster of miRNAs specifically expressed in ES cells, the miR-290-295 group, has been investigated by the knock-out approach. These analyses have revealed the crucial role of miRNAs in ES cell differentiation, lineage specification, and organogenesis, especially neurogenesis and cardiogenesis. Systematic investigation of the role of miRNAs in ES cells and embryos will allow us to find missing pieces of the mosaic of early development.  相似文献   

13.
14.
The connection between circular RNAs (circRNAs) and gastric cancer has been reported widely in recent years. However, previous studies have focused mainly on circRNAs from gastric cancer tissue. The objectives of the present study were to detect dysregulated circRNAs from both tissue and plasma of patients with gastric cancer and to explore their potential roles in the pathogenesis of gastric cancer. Expression profiles of circRNAs were obtained from the Gene Expression Omnibus (GEO) and analyzed using the GEO2R tool to identify differential expressed circRNAs. The significance threshold was set as |log2 (fold change)| > 2 and adjusted P < .05. The microRNA (miRNA) binding sites of the differentially expressed circRNAs were predicted using the Circular RNA Interactome web tool. TargetScan and the miRNet database were used to predict the miRNA target genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed using Database for Annotation Visualization and Integrated Discovery. Hub genes were identified and a network was constructed with Cytoscape. The overall survival rates for the selected miRNAs and messenger RNAs were evaluated by Kaplan-Meier Plotter. A total of three downregulated circRNAs (hsa_circ_0001190, hsa_circ_0036287, and hsa_circ_0048607) were identified in this study. Six miRNAs and eight hub genes met the significance criteria and were selected for further analysis. A circRNA-miRNA-hub gene network was constructed based on three circRNAs, six miRNAs, and eight hub genes. Evaluation of overall survival rates for the hub genes showed that low expression levels of GADD45A, PPP1CB, PJA2, and KLF2 were associated with poor overall survival. This study identified potential novel plasma circRNA biomarkers and provides insights into the underlying mechanisms of gastric cancer pathogenesis.  相似文献   

15.
《Genomics》2023,115(3):110598
Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.  相似文献   

16.
《Epigenetics》2013,8(11):1230-1237
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

17.
18.
19.
Regulation of apoptosis is crucial for tissue homeostasis under normal development and environmental stress. In Drosophila, cell death occurs in different developmental processes including embryogenesis. Here, we report that two members of the miR-2 seed family of microRNAs, miR-6 and miR-11, function together to limit the level of apoptosis during Drosophila embryonic development. Mutants lacking both miR-6 and miR-11 show embryonic lethality and defects in the central nervous system (CNS). We provide evidence that miR-6/11 functions through regulation of the proapoptotic genes, reaper (rpr), head involution defective (hid), grim and sickle (skl). Upregulation of these proapoptotic genes is responsible for the elevated apoptosis and the CNS defects in the mutants. These findings demonstrate that the activity of the proapoptotic genes is kept in check by miR-6/11 to ensure normal development.  相似文献   

20.
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号