首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of the inoculum source on the digestion of linear alkylbenzene sulfonates (LAS) under anaerobic conditions has been investigated. The potential for primary and ultimate LAS biodegradation of anaerobic sludge samples obtained from wastewater treatment plants (WWTPs) of different geographical locations was studied applying a batch test system. It was found that only 4–22% of the LAS added to the batch anaerobic digesters was primarily transformed suggesting a poor primary degradation of the LAS molecule in anaerobic discontinuous systems. Regarding ultimate biodegradation, the addition of LAS to the batch anaerobic digesters caused a reduction on the extent of biogas production. Significant differences in the inhibition extent of the biogas production were observed (4–26%) depending on the sludge used as inoculum. Effect of the surfactant on the anaerobic microorganisms was correlated with its concentration in the aqueous phase. Sorption of LAS on anaerobic sludge affects its toxicity by depletion of the available fraction of the surfactant. LAS content on sludge was related to the total amount of calcium and magnesium extractable ions. The presence of divalent cations promote the association of LAS with anaerobic sludge reducing its bioavailability and the extent of its inhibitory effect on the biogas production.  相似文献   

2.
Boron adsorption onto activated sludge was investigated using bench-scale reactors under simulated wastewater treatment conditions. Two experiments, continuous flow and batch, were performed. Boron concentrations were determined by means of inductively coupled plasma mass spectrometry. The results of the continuous-flow experiment indicated that a small amount of boron accumulated on the activated sludge and its concentration in the sludge depended on the nature of the biota in the sludge. Freundlich and Langmuir isotherm plots generated using the data from the batch experiment indicated that boron was adsorbed onto rather than absorbed into the sludge. The Freundlich constants, k and 1/n, were determined to be 26 mg/kg and 0.87. These values indicate that activated sludge has a limited capacity for boron adsorption and thus utilization of the excess sludge for farmland may not be toxic to plant at least boron concern.  相似文献   

3.
The fate of hydrophobic xenobiotic pollutants such as linear alkylbenzene sulfonates (LAS), nonylphenol ethoxylates (NPEO) and di-ethyl-hexyl phthalate (DEHP) during sewage sludge composting was addressed in this work. The experiments were conducted in a fully automated in-vessel autothermal composting system which was fed with a mixture of primary and secondary sludge and manure. The mixture composition was determined to achieve satisfactory humidity, C/N ratio and free air space (FAS). The effect of various parameters, such as the initial xenobiotic concentration, the presence of multiple xenobiotic compounds and the temperature of composting material sustained during the process on the xenobiotics biodegradation kinetics was investigated. It was generally established that significant xenobiotic reduction is achievable through composting under all conditions tested. According to the obtained results, the presence of LAS, NPEO and DEHP even at higher concentrations was not inhibitory to the bioprocess. However, the presence of multiple xenobiotic compounds such as NPEO, NP and DEHP in the sludge can influence LAS removal during LAS composting.  相似文献   

4.
The fraction of biologically active methyl tert-butyl ether degraders in reactors is just as important for prediction of removal rates as knowledge of the kinetic parameters. The fraction of biologically active methyl tert-butyl ether degraders in a heterogeneous biomass sample, taken from a packed bed reactor, was determined using a batch kinetic based approach. The procedure involved modeling of methyl tert-butyl ether removal rates from batch experiments followed by parameter estimations. It was estimated to be 5–14% (w/w) of the measured volatile suspended solids concentration in the reactor.  相似文献   

5.
The state-of-the-art understanding of activated sludge processes as summarized in activated sludge models (ASMs) predicts an instantaneous increase in the biomass activity (which is measured, e.g., by the corresponding respiration rate OUR, NUR, etc.) under sudden substrate concentration changes. Experimental data (e.g., short-term batch respiration experiments under aerobic or anoxic conditions) collected for the calibration of the dynamic models (ASMs) often exhibit a transient phenomenon while attaining maximum activity, which cannot be explained by the current understanding of the activated sludge process. That transient phenomenon exhibits itself immediately upon addition of a substrate source to an endogenously respiring activated sludge sample and it usually takes a few minutes until the activated sludge reaches its maximum possible rate under given environmental conditions. This discrepancy between the state-of-the-art model and the experimental data is addressed in detail in this investigation. It is shown that the discrepancy is not caused by an error in the experimental set-up/data but it is rather due to model inadequacy. Among the hypotheses proposed, it appears that this transient response of the activated sludge most likely results from the sequence of intracellular reactions involved in substrate degradation by the activated sludge. Results from studies performed elsewhere with pure cultures (S. cerevisae and E. coli) support the hypothesis. The transient phenomenon can be described by a dynamic metabolic network model or by a simple first-order model, as adopted in this study. The transient phenomenon occurring in short-term batch respiration experiments is shown to interfere severely with parameter estimation if not modeled properly (2.8%, 11.5%, and 16.8% relative errors [average of three experiments] on Y(H), micro(maxH), and K(S), respectively). Proper modeling of this transient phenomenon whose time constant is on the order of minutes (1 to 3 min) is expected to contribute fundamentally to a better understanding and modeling of Orbal, carousel, and SBR-type treatment plants with fast-alternating process conditions, although such studies are beyond the scope of this report.  相似文献   

6.
Two lab-scale bioreactors (reactors 1 and 2) were employed to examine the changes in biological performance and the microbial community of an activated sludge process fed with ozonated sludge for sludge reduction. During the 122 d operation, the microbial activities and community in the two reactors were evaluated. The results indicated that, when compared with the conventional reactor (reactor 1), the reactor that was fed with the ozonated sludge (reactor 2) showed good removal of COD, TN and cell debris, without formation of any excess sludge. In addition, the protease activity and intracellular ATP concentration of reactor 2 were increased when compared to reactor 1, indicating that reactor 2 had a better ability to digest proteins and cell debris. DGGE analysis revealed that the bacterial communities in the two reactors were different, and that the dissimilarity of the bacterial population was nearly 40%. Reactor 2 also contained more protozoa and metazoa, which could graze on the ozone-treated sludge debris directly.  相似文献   

7.
Waste water, derived from the reprocessing of used emulsions or suspensions, contains high concentrations of emulsified mineral oil and stabilizers, as well as different additives that are needed during the treatment process. Two stirred-tank reactors and two fixed-bed reactors were used to study the biodegradation of these waste-water compounds during two-stage biological treatment. The waste water was first proceesed in an activated sludge reactor to remove easily biodegradable substances. The effluent from the first stage was treated in three parallel operating reactors: an activated sludge tank containing different amounts of powdered activated carbon (PAC, between 0 and 2%), an upflow anaerobic fixed-bed reactor and an aerobic fixed-bed reactor (trickling filter). The results from the continuous treatment were compared with laboratory batch experiments. About 60% of the influent TOC was reduced by the first activated sludge treatment. The removal efficiency increased to about 70% by using a second activated sludge stage. This degradation was comparable to the maximum degree of degradation measured in laboratory batch experiments. PAC addition to the second activated sludge tank resulted in increased degradation rates. The removal efficiency increased to about 76% when 0.1% PAC was added and to 96% with 1% PAC. The removal efficiency decreased to 84% when the proportion of PAC was further increased to 2%. Variations in the amount of PAC addition per unit influent volume in the range of 50 and 200 mg/l had no significant effect on the TOC removal. Degradation models based on the MONOD-type equation were found to be in close correlation with the results obtained from batch experiments. However, the biological removal rates measured in batch experiments did not reflect the removal capacity determined in continuous operating treatment systems.  相似文献   

8.
This paper deals with theoretical and practical problems of modeling activated sludge wastewater treatment processes. A substrate removal model suitable for predicting the concentration of poorly biodegradable substances in purified water, based on batch laboratory experiments, is presented.  相似文献   

9.
Degradation kinetics for the treatment of straw paper wastewater in an activated sludge process have been studied and a kinetic model has been derived for both batch and continuous experiments. These two methods are reasonably equivalent only when rather low concentrations of substrate are involved. In other cases batch and continuous results are quite different. Both models, however, show a dependence upon concentration corresponding to that which is typical of multicomponent substrate degradation. The kinetic model derived from continuous tests appears to be more suitable for designing industrial processes in that it avoids oversizing of the aeration unit.  相似文献   

10.
The effect of antibiotics sulfadiazine and trimethoprim on activated sludge operated at 8°C was investigated. Performance and microbial communities of sequencing batch reactors (SBRs) and Membrane Bioreactors (MBRs) were compared before and after the exposure of antibiotics to the synthetic wastewater. The results revealed irreversible negative effect of these antibiotics in environmentally relevant concentrations on nitrifying microbial community of SBR activated sludge. In opposite, MBR sludge demonstrated fast adaptation and more stable performance during the antibiotics exposure. Dynamics of microbial community was greatly affected by presence of antibiotics. Bacteria from classes Betaproteobacteria and Bacteroidetes demonstrated the potential to develop antibiotic resistance in both wastewater treatment systems while Actinobacteria disappeared from all of the reactors after 60 days of antibiotics exposure. Altogether, results showed that operational parameters such as sludge retention time (SRT) and reactor configuration had great effect on microbial community composition of activated sludge and its vulnerability to antibiotics. Operation at long SRT allowed archaea, including ammonium oxidizing species (AOA) such as Nitrososphaera viennensis to grow in MBRs. AOA could have an important role in stable nitrification performance of MBR-activated sludge as a result of tolerance of archaea to antibiotics. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2708, 2019  相似文献   

11.
AIMS: To investigate the possibility of reducing excess sludge production in activated sludge processes by the addition of chemical uncouplers to greatly dissociate anabolism from catabolism. METHODS AND RESULTS: Ortho-chlorophenol (oCP), 2,4-dichlorophenol (DCP), 3,3',4',5-tetrachlorosalicylanilide (TCS), para-dinitrophenol (pNP) and 2,4-dinitrophenol (DNP) were chosen for short-term tests for their ability to reduce sludge yield by shaking bottle test. The most effective chemicals, DNP and pNP, together with TCS were tested for various uncoupler concentrations and biomass concentrations. TCS was tested in a lab-scale completely mixed activated sludge batch culture. The model (demonstrated by Liu) was verified with experimental data in completely mixed activated sludge batch test, but was inconsistent with the results from the shaking bottle batch test. The observed growth yield (Yobs) decreased with increasing of the ratio of initial uncoupler concentration to initial biomass concentration (Cu/X0). CONCLUSIONS: We suggest that the uncouplers oCP, DCP, TCS, pNP and DNP can cause a significant decrease in sludge production, the metabolism of which can explain the decline in sludge yield. SIGNIFICANCE AND IMPACT OF THE STUDY: The real strength of chemical uncoupler imposing on biomass should be Cu/X0, not initial uncoupler concentration (Cu) alone. Chemical uncouplers can be used to develop the activated sludge processes for minimizing excess sludge production.  相似文献   

12.
The understanding of the relationship between ammoniaoxidizing bacteria (AOB) communities in activated sludge and the operational treatment parameters supports the control of the treatment of ammonia-rich wastewater. The modifications of treatment parameters by alteration of the number and length of aerobic and anaerobic stages in the sequencing batch reactor (SBR) working cycle may influence the efficiency of ammonium oxidation and induce changes in the AOB community. Therefore, in the research, the impact of an SBR cycle mode with alternating aeration/ mixing conditions (7 h/1 h vs. 4 h/5.5 h) and volumetric exchange rate (n) on AOB abundance and diversity in activated sludge during the treatment of anaerobic sludge digester supernatant at limited oxygen concentration in the aeration stage (0.7 mg O2/l) was assessed. AOB diversity expressed by the Shannon-Wiener index (H') was determined by the cycle mode. At aeration/mixing stage lengths of 7 h/1 h, H' averaged 2.48 +/- 0.17, while at 4 h/ 5.5 h it was 2.35 +/- 0.16. At the given mode, AOB diversity decreased with increasing n. The cycle mode did not affect AOB abundance; however, a higher AOB abundance in activated sludge was promoted by decreasing the volumetric exchange rate. The sequences clustering with Nitrosospira sp. NpAV revealed the uniqueness of the AOB community and the simultaneously lower ability of adaptation of Nitrosospira sp. to the operational parameters applied in comparison with Nitrosomonas sp.  相似文献   

13.
Aims: Single‐walled carbon nanotubes (SWNTs) are likely to become increasingly widespread and yet their environmental impact is not well understood. The purpose of the current study was to evaluate the impact of SWNTs on microbial communities in a ‘sentinel’ environmental system, activated sludge batch‐scale reactors. Methods and Results: Triplicate batch reactors were exposed to SWNTs and compared to control reactors exposed to impurities associated with SWNTs. Automated ribosomal intergenic spacer analysis (ARISA) was used to assess bacterial community structure in each reactor. SWNT exposure was found to impact microbial community structure, while SWNT‐associated impurities had no effect, compared to controls. 16S rRNA gene sequence analysis indicated that dominant phylotypes detected by ARISA included members of the families Sphingomonadaceae and Cytophagacaceae and the genus Zoogloea. ARISA results indicated an adverse impact of SWNTs on the sphingomonad relative to other community members. Changes in community structure also occurred in both SWNT‐exposed and control reactors over the experimental time period and with the date on which activated sludge was obtained from a wastewater treatment facility. Conclusions: These results indicate that SWNTs differentially impact members of the activated sludge reactor bacterial community. Significance and Impact of the Study: The finding that community structure was affected by SWNTs indicates that this emerging contaminant differentially impacted members of the activated sludge bacterial community and raises the concern that SWNTs may also affect the services it provides.  相似文献   

14.
Li J  Liu Y  Zhang T  Wang L  Liu X  Dai R 《Bioresource technology》2011,102(4):3783-3789
This study investigated the effect of nickel on properties and microbial community of bulking activated sludge when 60-240 mg/L Ni(II) was dosed continuously in a sequencing batch reactor (SBR) over 350 days. Results showed that 120 mg/L nickel did not significantly inhibited removal of organic pollutant by activated sludge. However, the system was completely upset when 240 mg/L Ni(II) was dosed. Improvement of settling and dewatering ability was also observed with the addition of Ni(II). In addition, investigations by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rDNA of bacteria strain demonstrated that Ni(II) significantly affected microbial community of bulking activated sludge, judging from the elimination of original species and emergence of possible new nickel-resistant bacteria. The effect of nickel on shift of microbial community was an important cause resulted in the improvement of sludge properties in this bulking activated sludge system.  相似文献   

15.
Summary Laboratory scale activated sludge systems were operated under regimes of continuous or intermittent feeding of substrate. It was found that continuously fed systems repeatedly resulted in the development of filamentous bacteria and bulking of the sludge. Intermittently fed systems did form good settling sludges, without filamentous bacteria. The same results were found using different sludge loadings and different concentrations of mixed liquor suspended solids. High dissolved oxygen concentration did not prevent bulking in continuous systems while low dissolved oxygen concentration resulted in bulking with intermittently fed systems. It was found that the substrate removal rate of intermittently operated systems was always higher than for continuously fed systems. The hypothesis is formulated that intermittent feeding leads to higher substrate removal rates by floc forming bacteria and their predominance in intermittently fed systems, which can be compared to plug flow systems.  相似文献   

16.
Biosorption of Pb(II) and Cu(II) ions in single component and binary systems was studied using activated sludge in batch and continuous-flow stirred reactors. In biosorption experiments, the activated sludge in three different phases of the growth period was used: growing cells; resting cells; dead or dried cells. Because of the low adsorption capacity of the non-viable activated sludge especially in the case of Pb(II) ions, biosorption of the Cu(II) and Pb(II) ions from the binary mixtures was carried out by using the resting cells. The biosorption data fitted better with the Freundlich adsorption isotherm model. Using a mathematical model based on continuous system mass balance for the liquid phase and batch system mass balance for the solid phase, the forward rate constants for biosorption of Pb(II) and Cu(II) ions were 0.793 and 0.242 1 (mmolmin)(-1), respectively.  相似文献   

17.
Li J  Ren N  Li B  Qin Z  He J 《Bioresource technology》2008,99(14):6528-6537
Monosaccharides (e.g. glucose and fructose) are produced from the hydrolyzation of macromolecules, such as starch, cellulose, hemicellulose and lignin, which are abundant in various industrial wastewaters. The elucidation of anaerobic activated sludge microbial community utilizing monosaccharides will lay an important foundation for the industrialization of biohydrogen production. In this study, the hydrogen production by a mixed microbial culture on four monosaccharides (glucose, fructose, galactose and arabinose) was investigated in a batch cultures. The mixed microbial culture was obtained from anaerobic activated sludge in a continuous stirred-tank reactor (CSTR) after 29 days of acclimatization. The results indicated that glucose had the highest specific hydrogen production rate of 358 mL/g.g mixed liquid volatile suspended solid (MLVSS), while arabinose had the lowest hydrogen production rate of 28 mL/g.gMLVSS. Glucose also possessed the highest specific conversion rate to hydrogen of 82 mL/g glucose, while fructose had the highest specific conversion rate to liquid product of 443 mg/g fructose. Arabinose had the lowest conversion rates to both liquid products and hydrogen. Metabolic pathways and fermentation products were the major reasons for the difference in hydrogen production from these four monosaccharides. The complex fermentation pathways of arabinose reduced its hydrogen production efficiency and a long acclimation period (over 68 h) was required before the anaerobic activated sludge could effectively utilize arabinose in batch cultures.  相似文献   

18.
A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.  相似文献   

19.
Simultaneous nitrification and denitrification (SND) was investigated in the single aeration tank of a municipal wastewater treatment plant. Microelectrode measurements and batch experiments were performed to test for the presence of SND. Microelectrodes recorded the presence of O(2) concentration gradients in individual activated sludge flocs. When the O(2) concentration in the bulk liquid was <45 microM, anoxic zones were detected within flocs with a larger diameter (approximately 3000 microm). The O(2) penetration depth in the floc was found to be dependent on the O(2) concentration in the bulk liquid. Nitrification was restricted to the oxic zones, whereas denitrification occurred mainly in the anoxic zones. The nitrification rate of the activated sludge increased with increasing O(2) concentration in the bulk liquid, up to 40 microM, and remained constant thereafter. SND was observed in the aerated activated sludge when O(2) concentration was in the range of 10 to 35 microM.  相似文献   

20.
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufactutring plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l−1, and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 3,000 mg l−1 and in the batch mode was 2,400 mg l−1. The attached biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 1,500 mg l−1 and in the batch mode was 980 mg l−1. Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号